

ATLAS DE RISCO GEOLÓGICO E HIDROLÓGICO DA AMAZÔNIA

MINISTÉRIO DE MINAS E ENERGIA

Ministro de Estado

Alexandre Silveira de Oliveira

Secretaria Nacional de Geologia, Mineração e Transformação Mineral

Ana Paula Lima Vieira Bittencourt

SERVIÇO GEOLÓGICO DO BRASIL - SGB DIRETORIA EXECUTIVA

Diretora-Presidente (interina)

Sabrina Soares de Araújo Góis - interina

Diretor de Geologia e Recursos Minerais

Francisco Valdir Silveira

Diretora de Hidrologia e Gestão Territorial

Alice Silva de Castilho

Diretora de Relações Institucionais e Desenvolvimento

Sabrina Soares de Araújo Góis

Diretora de Administração e Finanças (interina)

Sabrina Soares de Araújo Góis

DEPARTAMENTO DE GESTÃO TERRITORIAL

Chefe do Departamento de Gestão Territorial

Diogo Rodrigues A. da Silva

Chefe da Divisão de Gestão Territorial

Maria Adelaide Mansini Maia

Chefe da Divisão de Geologia Aplicada

Tiago Antonelli

Coordenação Executiva

Júlio César Lana

SUPERINTENDÊNCIA REGIONAL DE BELÉM

Superintendente (interina)

Dianne Danielle Farias Fonseca

Gerente de Hidrologia e Gestão Territorial

Sheila Gatinho Teixeira

Supervisor de Hidrogeologia e Gestão Territorial

Manoel Imbiriba Júnior

APOIO

Chefe do Núcleo de Comunicação

Michelle de Aquino Araújo

Chefe da Divisão de Editoração Geral

Hemilton Moraes Cunha

Chefe do Departamento de Informações Institucionais

Ney Ferreira dos Santos

Chefe Divisão de Documentação Técnica

Jéssica dos Santos Gonçalves

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA NACIONAL DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL (SGB/CPRM)

DIRETORIA DE HIDROLOGIA E GESTÃO TERRITORIAL

PROGRAMA DE GESTÃO DE RISCOS E DESASTRES

ATLAS DE RISCO GEOLÓGICO E HIDROLÓGICO DA AMAZÔNIA

REALIZAÇÃO DEPARTAMENTO DE GESTÃO TERRITORIAL DIVISÃO DE GEOLOGIA APLICADA

Autores

Sheila Gatinho Teixeira • Raimundo Almir Costa da Conceição • Claudio Fabian Szlafsztein Íris Celeste Nascimento Bandeira • Dianne Danielle Farias Fonseca • Gisele Corrêa dos Anjos Elton Rodrigo Andretta • Hugo de Souza Ferreira

Belém 2025

REALIZAÇÃO

Chefe do Departamento de Gestão Territorial

Diogo Rodrigues A. da Silva

Chefe da Divisão de Geologia Aplicada

Tiago Antonelli

COORDENAÇÃO EXECUTIVA

Júlio César Lana

AUTORES

Sheila Gatinho Teixeira Raimundo Almir Costa da Conceição Claudio Fabian Szlafsztein Íris Celeste Nascimento Bandeira Dianne Danielle Farias Fonseca Gisele Corrêa dos Anjos Elton Rodrigo Andretta Hugo de Souza Ferreira

seus@sgb.gov.br www.sgb.gov.br

Dados Internacionais de Catalogação-na-Publicação (CIP)

A881

Atlas de risco geológico e hidrológico da Amazônia / Autores Sheila Gatinho Teixeira ... [et al.] ; realização Departamento de Gestão Territorial. Divisão de Geologia Aplicada. — Belém: CPRM, 2025. 1 recurso eletrônico: PDF

Programa gestão de riscos e desastres. ISBN 978-65-5664-664-0

1.Geologia – Brasil – Amazônia. 2.Hidrologia – Brasil – Amazônia. I. Teixeira, Sheila Gatinho. II. Conceição Raimundo Almir Costa da. III. Szlafsztein, Claudio Fabian. IV. Bandeira, Íris Celeste Nascimento. V. Fonseca, Dianne Danielle Farias. VI. Anjos, Gisele Corrêa dos. VII. Andretta, Elton Rodrigo. VIII. Ferreira, Hugo de Souza. IX. Título.

CDD 551.09811

Ficha catalográfica elaborada pela bibliotecária Teresa Rosenhayme CRB / 7 5662

Direitos desta edição: Serviço Geológico do Brasil - SGB É permitida a reprodução desta publicação, desde que mencionada a fonte.

CRÉDITOS TÉCNICOS

Revisão Técnica

Claudio Fabian Szlafsztein

Apoio Técnico

Lucas Eduardo Monteiro Brito (estagiário) Fernanda Adrielle Pereira dos Santos (estagiária)

Editoração / Diagramação (Miolo)

Andréia Continentino Andrea Machado de Souza

Capa

Áurea Letícia de Carvalho Caxias

Revisão do texto

Irinéa Barbosa da Silva

Normalização Bibliográfica

Nelma Fabrícia da P. Ribeiro Botelho

APRESENTAÇÃO

É COM GRANDE SATISFAÇÃO que apresentamos o Atlas de Risco Geológico e Hidrológico da Amazônia (2012 a 2024), resultado de 13 anos de mapeamento e análises realizadas pelo Serviço Geológico do Brasil (SGB-CPRM) no âmbito do Programa de Cartografia de Riscos Geológicos.

Este atlas é fruto de um esforço contínuo para compreender e registrar os principais processos que impactam a vida das populações amazônicas. Reúne informações sobre riscos, como inundações, erosão costeira, erosão fluviomarinha, erosão pluvial, movimentos de massa e o fenômeno das "terras caídas". Muitos desses processos são intensificados pela ocupação desordenada e têm provocado perdas significativas de moradias, infraestrutura e, em alguns casos, vidas humanas.

Trata-se de uma publicação inédita, que apresenta tipologias nunca antes descritas, descobertas ao longo dos trabalhos de campo e análises conduzidos pelo SGB-CPRM. Esses registros ampliam o conhecimento sobre a Amazônia e oferecem informações fundamentais para gestão de riscos e desastres na região.

Mais do que um documento técnico, este atlas é também um material de divulgação e sensibilização, pensado para todas as pessoas interessadas em conhecer melhor a Amazônia e compreender os desastres que nela ocorrem. Ao reunir informações acessíveis e confiáveis, busca-se apoiar a prevenção de desastres e incentivar um desenvolvimento mais seguro e sustentável para a região.

Alice Silva de Castilho

Diretoria de Hidrologia e Gestão Territorial

RESUMO

O ATLAS DE RISCO GEOLÓGICO E HIDROLÓGICO DA AMAZÔNIA é uma iniciativa do Serviço Geológico do Brasil (SGB-CPRM), elaborada pelo Departamento de Gestão Territorial e pela Divisão de Geologia Aplicada. Seu objetivo é identificar, demonstrar e aprofundar a compreensão dos principais riscos geológicos e hidrológicos presentes na Amazônia Legal. Busca fornecer informações técnicas fundamentadas para subsidiar ações de prevenção, mitigação e planejamento territorial sustentável – medidas essenciais para proteger as comunidades, o meio ambiente e a infraestrutura da região.

O atlas aborda uma ampla gama de tipologias de risco, incluindo erosão costeira, erosão fluviomarinha, erosão pluvial, movimento de massa (deslizamentos planares, rastejos e quedas de blocos), terras caídas, inundações, ilhas flutuantes e terras crescidas.

Cada processo é apresentado com explicações objetivas, mapas e imagens que ilustram sua dinâmica e sua severidade. Destaca-se a erosão costeira, que ameaça praias e zonas urbanas litorâneas; as inundações, que afetam diretamente a vida das populações ribeirinhas e dificultam o planejamento do uso do solo; e os processos denominados como ilhas flutuantes (formadas por erosão fluviomarinha) e as terras crescidas (resultantes do acúmulo de sedimentos transportados pelos rios) que nunca foram documentados como agentes deflagradores de desastres, mas que alteram o relevo natural e afetam a ocupação humana, causando perdas patrimoniais, desafios à agricultura e aumento da vulnerabilidade das comunidades frente às mudanças ambientais.

Outro aspecto relevante é a análise das vulnerabilidades socioambientais, que associa os riscos naturais às limitações de adaptação das po-pulações locais e às condições de ocupação do território. O documento enfatiza a importância do uso dos mapas de risco e suscetibilidade como ferramentas essenciais para orientar o planejamento territorial, evitando construções em áreas classificadas com grau alto ou muito alto, promovendo a ocupação mais inteligente e sustentável.

Por fim, o atlas constitui um importante instrumento técnico-científico, reforçando a necessidade de ações integradas entre órgãos ambientais, governos estaduais e municipais, comunidades e instituições de pesquisa. Sua implementação é fundamental para promover uma gestão proativa dos riscos ambientais na Amazônia, contribuindo para a preservação do bioma, a segurança das populações e o desenvol-vimento sustentável da região – em consonância com as diretrizes de proteção e conservação estabelecidas pelo governo federal.

Palavras chave: risco geológico, risco hidrológico, gestão territorial, Amazônia

ABSTRACT

THE GEOLOGICAL AND HYDROLOGICAL RISK ATLAS OF IN AMAZON is an initiative of the Geological Survey of Brazil (SGB-CPRM), developed by the Department of Territorial Management and the Division of Applied Geology. Its objective is to identify, demonstrate, and deepen the understanding of the main geological and hydrological risks present in the Legal Amazon. It seeks to provide well-founded technical information to support prevention, mitigation, and sustainable territorial planning actions—essential measures to protect the region's communities, environment, and infrastructure.

The atlas addresses a wide range of risk typologies, including coastal erosion, fluvio-marine erosion, pluvial erosion, mass movement (planar landslides, creeps, and rockfalls), "terras caídas", floods, floating islands, and accreted lands.

Each process is presented with clear explanations, maps, and images illustrating its dynamics and severity. Coastal erosion is particularly significant, threatening both beaches and urban coastal areas. Floods directly affect riverine communities and complicate land-use planning. Other processes, such as floating islands (formed by fluvial-marine erosion) and cultivated lands (created by sediment accumulation from rivers), have not previously been documented as disaster-triggering agents. However, they alter the natural landscape, affect human settlements, and cause property loss, agricultural challenges, and increased community vulnerability to environmental changes.

Another relevant aspect is the analysis of socio-environmental vulnerabilities, which links natural risks to the adaptation limitations of local populations and the conditions of land use and settlement. The document emphasizes the importance of using risk and susceptibility maps as essential tools to guide territorial planning, avoiding construction in areas classified with a high or very high degree of risk and promoting more intelligent and sustainable settlement.

Finally, the atlas constitutes an important technical-scientific instrument, reinforcing the need for integrated actions among environmental agencies, state and municipal governments, communities, and research institutions. Its implementation is fundamental to promoting proactive management of environmental risks in the Amazon, contributing to the preservation of the biome, the safety of populations, and the sustainable development of the region—in line with the protection and conservation guidelines established by the federal government.

Keywords: geological risk, hydrological risk, territorial management, Amazon.

SUMÁRIO

1. Introdução	13
2. Áreas e população em risco	14
3. Tipologias de risco	21
3.1 Erosão costeira	21
3.2 Erosão fluviomarinha	24
3.3 Erosão pluvial	26
3.4 Inundação	29
3.5 Movimento de massa	35
3.5.1 Deslizamentos	35
3.5.2 Rastejo	37
3.5.3 Queda de blocos	37
3.6 Terras caídas	39
4. Processos peculiares da Amazônia	42
4.1 Ilhas flutuantes	42
4.2 Terras crescidas	43
5. Vulnerabilidade e adaptação: componentes essenciais dos desastres na Amazônia	43
6. Conclusão	47
Referências	48
Glossário	50

■ 1. Introdução

O Atlas de Risco Geológico e Hidrológico da Ama-

zônia é um documento técnico-científico que analisa os principais riscos geológicos e hidrológicos presentes na região amazônica do Brasil. Com objetivo de subsidiar gestores, órgãos públicos, comunidades e demais interessados na elaboração e implementação de políticas de planejamento territorial, preservação ambiental, redução de desigualdades e gestão de riscos de desastres naturais, em um contexto de desenvolvimento sustentável.

As áreas de risco são aquelas que podem ocorrer eventos naturais ou induzidos pela ação humana, capazes de causar prejuízos físicos, materiais ou patrimoniais. O risco geológico, portanto, é considerado apenas em locais com ocupação humana permanente, como residências, edifícios, hospitais, escolas e estabelecimentos comerciais. Assim, áreas desabitadas, como loteamentos em implantação, campos destinados a esportes ou à agropecuária, terrenos baldios, rodovias, pontes, ferrovias e túneis, não são contempladas no mapeamento.

Para a elaboração do atlas, foi utilizado o banco de dados do Serviço Geológico do Brasil (SGB-CPRM) (https://www.sgb.gov.br/produtos-por-estado-cartografia-de-riscos-geologicos) com informações sobre as setorizações dos riscos geológicos e hidrológico classificados como de grau alto e muito alto, realizadas em municípios brasileiros entre 2012 e 2024. Foram utilizados, em especial, os dados dos estados que compõem a Amazônia Legal, Acre, Amapá,

Amazonas, Mato Grosso, Pará, Rondônia, Roraima, Tocantins e parte do Maranhão. Neste último, do total de 217 municípios, apenas 181 integram a Amazônia Legal (Figura 1.1). Vale destacar que o projeto de mapeamento de áreas de risco do SGB-CPRM não contempla áreas de baixo e médio risco.

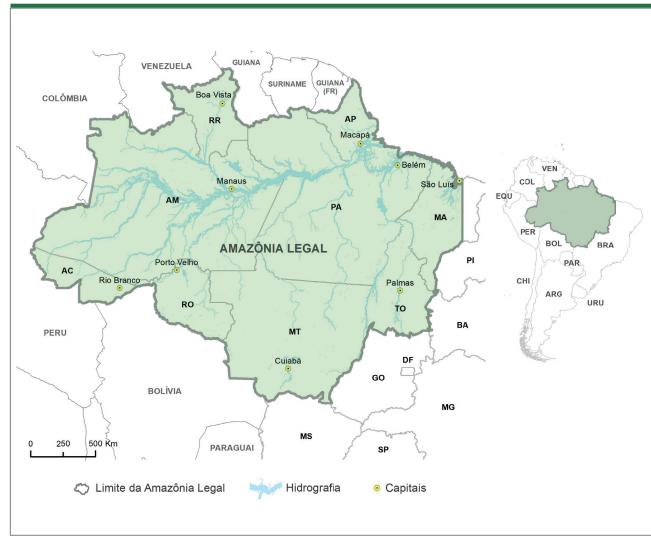


Figura 1.1: Mapa de localização da Amazônia Legal. Fonte: elaborado pelos autores.

Informações de 354 municípios foram analisadas, totalizando 2.693 setores de risco, demonstrado na Figura 1.2. Com a evolução no entendimento das tipologias, como erosão costeira, erosão fluviomarinha e o fenômeno das terras caídas, as setorizações mais antigas passaram por revisões, incluindo correções de nomenclatura e reinterpretações de levantamentos específicos, para manter coerência na classificação e compreensão dos diferentes tipos de risco.

As informações foram analisadas no Microsoft Excel e nas plataformas Google Sheets, Looker Studio e QGIS, o que possibilitou a geração de dados estatísticos e sua espacialização em ambiente de Sistema de Informação Geográfica (SIG).

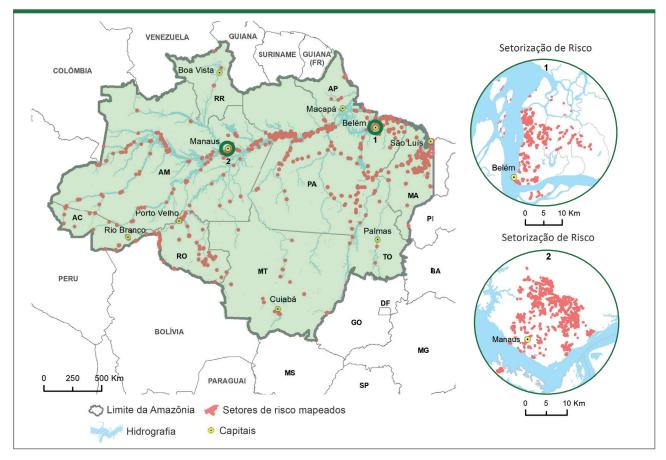


Figura 1.2: Localização dos 2.693 setores de riscos analisados na Amazônia Legal, com base em informações atualizadas e modificadas das cartografias de risco geológico (SGB, (S.d.)). Fonte: Elaborado pelos autores

■ 2. Áreas e população em risco

A apresentação dos dados estatísticos foi estruturada em duas abordagens. A primeira considera a quantidade absoluta de áreas (ou setores) de risco, independentemente das tipologias que as afetam, permitindo uma visão geral do número de áreas, pessoas e habitações em risco. A segunda abordagem avalia os tipos de risco existentes e potenciais aos quais uma área está sujeita. Assim, em um determinado local onde há, por exemplo, riscos de inundação e terras caídas, a contagem de ocorrências supera o número absoluto de setores mapeados.

Ao longo dos 13 anos de cartografia sistemática dos riscos geológicos e hidrológicos, o Serviço Geológico do Brasil (SGB-CPRM) avaliou in loco áreas de risco que podem afetar a população em 354 municípios, o que corresponde a 45,7% dos 772 municípios da Amazônia. Desses, 284 municípios apresentaram alguma tipologia de risco classificada como de grau alto ou muito alto, enquanto 70 municípios não registraram áreas com esse nível de risco. Destaca-se o estado de Rondônia, onde, dos 52 municípios visitados, quase metade (46%), não possuem áreas de risco alto ou muito alto (Tabela 2.1). Amazonas, Acre e Rondônia tiveram 100% dos seus municípios mapeados, seguidos por Pará (66,7%), Amapá (50%), Maranhão (41,4%), Roraima (33,3%), Mato Grosso (15,6%) e Tocantins (10,7%), conforme apresentado na Figura 2.1.

Tabela 2.1: Municípios mapeados na Amazônia.	Tabe	la 2.1:	Municípios	mapeados	s na Amazônia.
---	------	---------	------------	----------	----------------

ESTADO	MUNICÍPIOS AVALIADOS	COM ÁREA DE RISCO	SEM ÁREA DE RISCO
Amazonas	62	57	5
Amapá	8	8	0
Acre	22	18	4
Pará	96	91	5
Rondônia	52	28	24
Roraima	5	3	2
Tocantins	15	6	9
Maranhão	72	57	14
Mato Grasso	22	15	7
Total	354	284	70

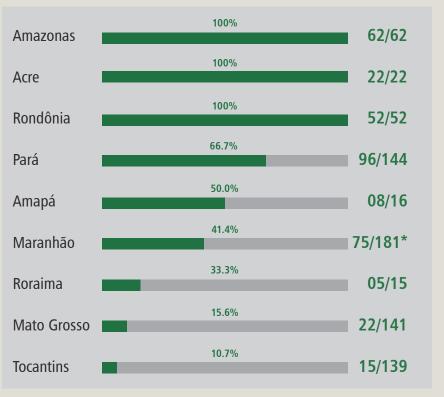


Figura 2.1: Municípios mapeados por estado no período de 2012 a 2024. Fonte: Elaborado pelos autores. *No Maranhão, do total de 217 municípios, apenas 181 integram a Amazônia Legal.

Porcentagem dos municípios mapeados e quantidade de pessoas e edificações em áreas de risco na Amazônia

Dos setores mapeados, 61% correspondem a áreas de risco alto e 39% a áreas de risco muito alto (Figura 2.2).

Os estados com maior quantidade de áreas de risco alto e muito alto são o Pará (41,3%) e o Amazonas (29,4%). Em contraste, o estado do Tocantins aparece com apenas nove áreas de risco mapeadas (Figuras 2.3). Esses resultados são influenciados por diversos fatores, como a solicitação de mapeamento por parte dos municípios, as condições de acesso logístico das equipes técnicas e a disponibilidade de recursos para a realização dos levantamentos.

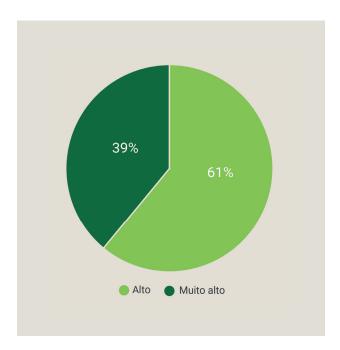


Figura 2.2: Gráfico das porcentagens de áreas de risco alto e muito alto identificadas na Amazônia. Fonte: Elaborado pelos autores.

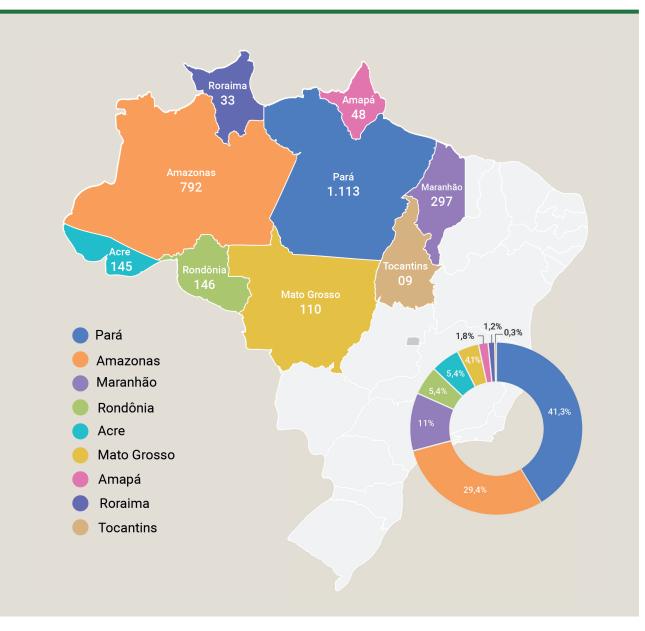


Figura 2.3: Quantidade de setores de risco por estado. Fonte: Elaborado pelos autores.

Em nível estadual, Pará e Amazonas concentram, juntos, a maior parte da população em risco na Amazônia, totalizando cerca de 567 mil pessoas. O Acre apresenta a maior porcentagem relativa da população em risco (10,2%), seguido por Amapá (5,76%), Amazonas (5,10%) e Pará (4,6%) (Figura 2.4). Observa-se uma correlação positiva entre a população em risco e o número de habitações em risco, evidenciando uma associação direta entre esses dois indicadores (Figura 2.5).

O mapa de calor (Figura 2.6) destaca os focos de maior concentração em áreas de risco, com ênfase nas capitais estaduais - Belém (PA), Manaus (AM) e Rio Branco (AC).

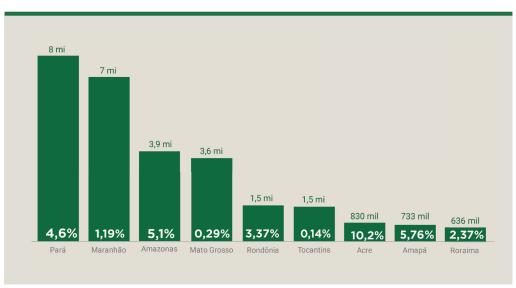


Figura 2.4: População total por estado e população em risco (em porcentagem). Fonte: Elaborado pelos autores.

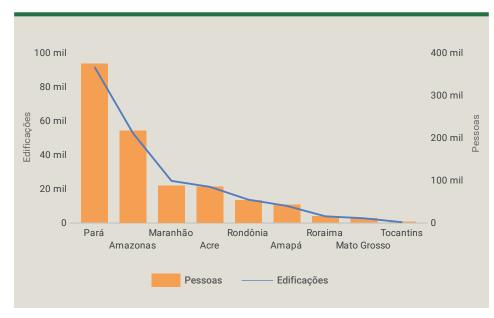


Figura 2.5: Comparação entre população e edificações em áreas de risco. Fonte: Elaborado pelos autores.

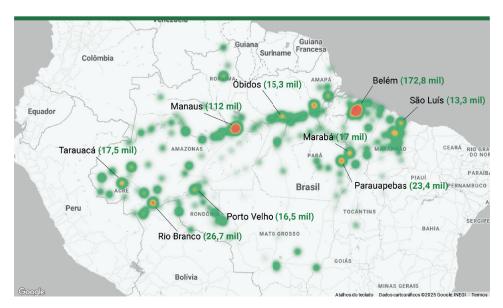


Figura 2.6: Mapa de calor apresentando a espacialização da população em risco. As capitais são o grande foco de pessoas em situação de risco alto e muito alto. Fonte: Elaborado pelos autores.

Na Amazônia, foram identificadas 22 tipologias de risco, sendo a inundação o risco mais recorrente, com 1.348 ocorrências (Figura 2.7). Em seguida, destacam-se os deslizamentos planares (967), os alagamentos (271) e as terras caídas (254). Outras ameaças significativas incluem erosão tipo ravina (186) e enxurradas (163).

A análise das tipologias de risco e o número de pessoas afetadas (Figura 2.8) indica que as inundações representam o maior impacto, com 691.989 pessoas em risco (47,75%). Em seguida, aparecem os alagamentos (231.618 pessoas, 16%) e deslizamentos planares (160.208 pessoas, 11,05%). Esses valores estão em consonância com as avaliações de

campo e refletem as condições climáticas da Amazônia, marcadas por períodos de chuvas intensas, que desencadeiam processos hídricos e diferentes tipos de movimentos de massa.

A avaliação individual das tipologias revela que o risco de inundação se concentra principalmente em Manaus (AM), Belém (PA) e Alenguer (PA).

22 Tipologias de risco **X** Ocorrências Inundação Queda de blocos 1348 42 Deslizamento planar 967 40 Rastejo Alagamento 271 Erosão costeira/marinha 33 Terras caídas Deslizamento rotacional 254 18 Erosão tipo ravina 186 Subsidência 14 163 Tombamento Enxurrada Erosão de margem fluvial Corrida de detritos 149 Enchente 140 Acúmulo de sedimentos 3 Erosão flúvio-marinha Erosão sub-superficial 121 Erosão laminar Colapso 101 Corrida de solo/lama Erosão tipo voçoroca 99

Figura 2.7: Quantidade de ocorrências de tipologias de risco na Amazônia, com base em informações atualizadas e modificadas das cartografias de risco geológico. Fonte: Elaborado pelos autores.

Estatísticas das tipologias X Pessoas em risco

Inundação	691.989	Deslizamento rotacional	14.618
Alagamento	231.618	Corrida de detritos	11.983
Deslizamento planar	160.208	Erosão costeira/marinha	8.368
Enchente	80.076	Erosão fluviomarinha	6.093
Terras caídas	77.417	Queda de blocos	5.944
Enxurrada	50.085	Subsidiência	4.172
Erosão tipo ravina	42.925	Tombamento	3.228
Erosão laminar	26.434	Acúmulo de sedimentos	101
Rastejo	22.692	Erosão subsuperficial	920
Erosão de margem fluvia	17.938	Colapso	608
Erosão tipo voçoroca	16.020	Corrida de solo/lama	40

Figura 2.8: Tipologias de risco x pessoas afetadas, com base em informações atualizadas e modificadas das cartografias de risco geológico. Fonte: Elaborado pelos autores.

Os deslizamentos planares apresentam elevada ocorrência em Manaus (AM), que também figura entre os municípios mais afetados por alagamentos, refletindo as limitações da cidade em relação ao sistema de drenagem urbana. Já o fenômeno das terras caídas evidencia um cenário preocupante em Maraã (AM), Rio Branco (AC), Prainha (PA), Óbidos (PA) e Porto Velho (RO) (Figura 2.9).

Dentre os demais tipos de risco, como erosão tipo ravina, enxurrada, erosão de margem fluvial e enchente – destaca-se o município de Manaus (AM). Já Belém (PA) apresenta riscos significativos relacionados à erosão fluviomarinha e inundações (Figura 2.10). Por ser uma cidade costeira, Belém também é suscetível aos efeitos da subida do nível do mar e da erosão fluviomarinha. A ocorrência de chuvas intensas, aliada às deficiências na infraestrutura urbana, potencializa ainda mais os riscos de alagamentos.

Em São Luís (MA), sobressaem as tipologias de erosão laminar e erosão costeira/marinha, intensificadas pelas chuvas sazonais e pelos desafios hídricos locais. Já a erosão tipo voçoroca aparece com frequência em Manaus (AM), Carauari (AM), Irituia (PA) e Iranduba (AM).

Outras tipologias de risco identificadas na Amazônia incluem deslizamento rotacional, registrado em Iranduba-AM, Rio Branco-AC, Parauapebas-PA; a queda de blocos, observada em Barra do Garças-AM, Parauapebas-PA; e a subsidência, presente em Abaetetuba-PA, Rio Branco-AC, Manaus-AM.

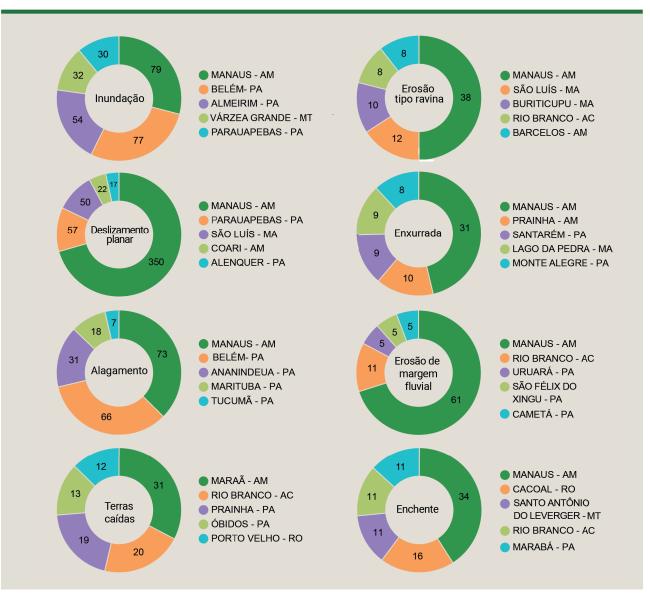


Figura 2.9: Os gráficos apresentam os cinco municípios com maior número de ocorrências de risco a inundação, deslizamento planar, alagamento, terras caídas, erosão tipo ravina, enxurrada, erosão de margem fluvial e enchentes. Fonte: Elaborado pelos autores.

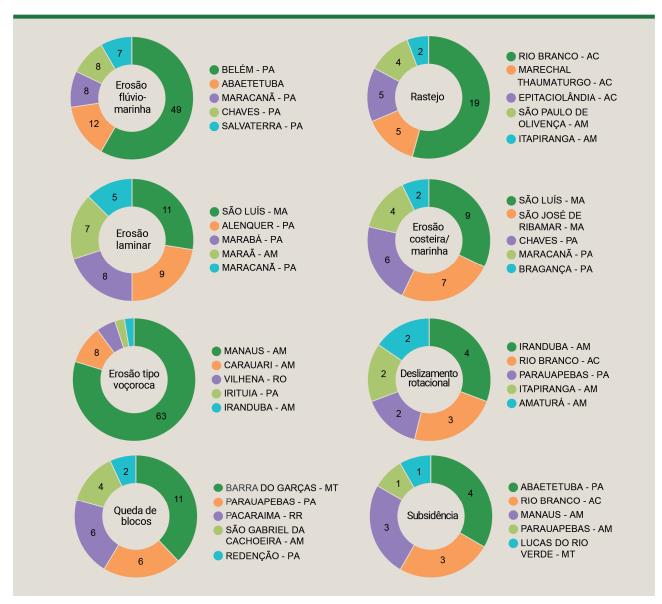


Figura 2.10: Os gráficos apresentam os cinco municípios com maior número de ocorrências de risco à erosão fluviomarinha, erosão laminar, erosão tipo voçoroca, queda de blocos, rastejo, erosão costeira/marinha, deslizamento rotacional e subsidência. Fonte: Elaborado pelos autores.

Em menor número, também foram mapeados processos de tombamento, corrida de detritos, acúmulo de sedimentos, erosão subsuperficial, colapso e corrida de solo/lama (Figura 2.11).

De modo geral, a avaliação estatística da base de dados de áreas de risco, demonstra que a região amazônica apresenta uma variedade expressiva de tipos de risco geológico e hidrológico, afetando mais de 1,47 milhão de pessoas, grande parte delas em situação de elevada vulnerabilidade social, conforme observado durante as atividades de campo. Considerando que, em mais de 50% dos municípios da Amazônia, a quantidade e os graus de risco, ainda não foram oficialmente identificados, torna-se urgente o esforço conjunto de todas as esferas governamentais para o levantamento contínuo dessas informações, com vistas à mitigação ou eliminação dos riscos.

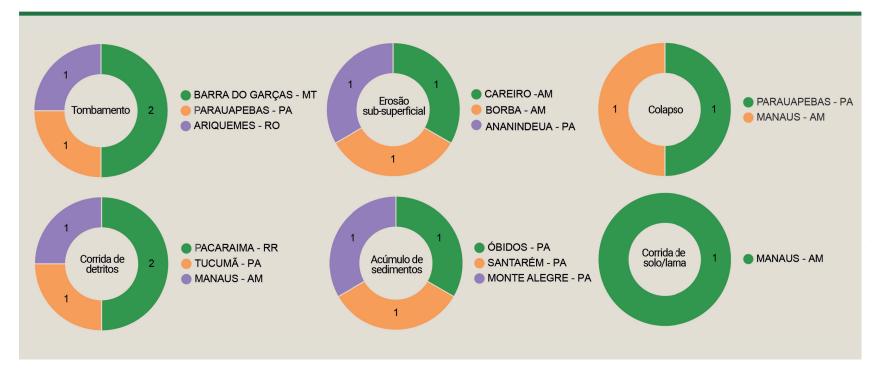


Figura 2.11: Os gráficos apresentam os municípios com ocorrências de risco a tombamento, corrida de detritos, acúmulo de sedimentos, erosão subsuperficial, colapso e corrida de solo/lama. Fonte: Elaborado pelos autores.

■ 3. Tipologias de risco

3.1 Frosão costeira

A Zona Costeira Amazônica, compreendida entre o Rio Oiapoque (Amapá) e a Baía de São Marcos (Maranhão), apresenta, em alguns trechos, recuos da linha de costa, decorrentes da interação de processos marinhos e continentais (Figura 3.1). Essas áreas representam risco ao desenvolvimento de atividades sociais e econômicas e foram mapeadas pelo SGB-CPRM, sobretudo nas praias oceânicas do estado do Pará (Figura 3.2), no município de Calçoene (estado do Amapá) (Figura 3.3) e na Ilha do Maranhão (estado do Maranhão) (Figura 3.4).

As praias oceânicas da costa amazônica caracterizam-se pela baixa declividade, grandes extensões, sedimentos provenientes da plataforma continental e por processos morfológicos associados à dinâmica eólica, às meso e macromarés, correntes e ondas marinhas, além da influência da descarga de diversos estuários. Os eventos erosivos mais intensos ocorrem, em geral, após as preamares (maré alta), durante as marés de sizígias que coincidem com as fases de lua cheia e nova e, nos meses de março e setembro, quando acontecem os equinócios.

A esses fatores soma-se a contribuição dos altos índices pluviométricos, especialmente nos meses de fevereiro e março (Teixeira; Bandeira, 2020; Teixeira; Bandeira, 2021).

A erosão ocorre porque as praias não conseguem reabastecer as areias removidas pela ação das ondas, correntes e ventos. Esse déficit sedimentar é provocado pela presença de bancos arenosos submersos, localizados tanto na desembocadura dos estuários quanto na frente das praias, que retêm os sedimentos oriundos da plataforma continental e dos estuários, reduzindo a quantidade de material que alcança a linha de costa. Esse processo é evidente, por exemplo, nas praias de Ajuruteua (município de Bragança) (Fonseca; Conceição; Asp Neto, 2015) e Boa Vista (município de Quatipuru), no estado do Pará (Figura 3.5).

Outro fator que intensifica a erosão é a migração de pequenos canais de marés em direção à praia, especialmente durante eventos meteorológicos e oceanográficos de alta energia. Nessas situações, ocorre a erosão das margens dos canais, afetando edificações e a estrutura urbana instalada nas áreas costeiras, como na Praia do Crispim, município de Marapanim (PA) (Figuras 3.6 e 3.7) (Teixeira; Melo Jr., 2019).

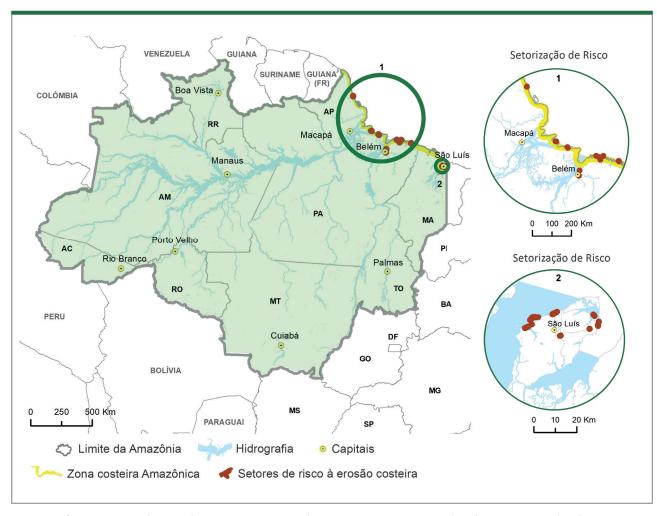


Figura 3.1: Localização dos setores com risco à erosão costeira, a partir de informações atualizadas e modificadas das cartografias de risco geológico. Fonte: Elaborado pelos autores.

Figura 3.2: Residência e muro de contenção destruídos pela erosão costeira em 2015. Praia do Farol – município de Salinópolis – PA. Fonte: Sheila Teixeira.

Figura 3.3: Casa destruída pela erosão costeira em maio de 2018. Praia do Goiabal, município de Calçoene (AP). Fonte: Lana Nunes - Projeto SISPRAM/IEPA.

Além disso, a ocupação desordenada de praias, bermas e dunas interfere no transporte eólico de sedimentos, contribuindo para a intensificação do processo erosivo (Teixeira; Bandeira; Dantas et al., 2021).

As praias oceânicas apresentam alto potencial turístico e imobiliário, atualmente ameaçado pelo avanço do processo de erosão. Moradias, estabelecimentos comerciais, e estruturas urbanas, como postes de energia elétrica, ruas e muros de contenção sofrem os impactos totais ou parciais da erosão,

como observado nas praias do Farol (município de Salinópolis) e do Crispim (município de Marapanim), ambas no estado do Pará.

Entre as medidas mitigadoras iniciais destacam-se: a elaboração de mapas de suscetibilidade à erosão costeira, indicando as taxas anuais de recuo da linha de costa e os locais mais adequados para a ocupação de famílias e empreendimentos turísticos; e a implementação de programas de educação ambiental e orientação comunitária, voltados à prevenção da ocupação desordenada das praias.

Figura 3.4: Destruição da orla, do calçadão e das obras de contenção em decorrência da erosão costeira. Praia Ponta d'Areia – município de São Luís – MA (2017). Fonte: Sidiney Barros.

Figura 3.5: Banco arenoso submerso que aflora durante a maré baixa, retendo sedimentos e contribuindo para o processo erosivo. Na imagem, observa-se a destruição do muro de arrimo da orla da Praia de Boa Vista (município de Quatipuru, estado do Pará), em junho de 2025. Fonte: Bruna Lira.

Figura 3.6: A migração de canal de maré em direção à praia, contribuindo para a erosão e a consequente destruição de ruas e residências na Praia do Crispim (município de Marapanim, estado o Pará), em iunho de 2025. Fonte: Almir Costa.

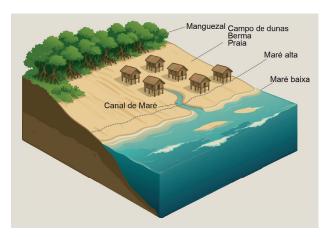


Figura 3.7: Esquema de um perfil de praia oceânica típica da costa amazônica, destacando a ocupação da faixa dinâmica, a presença de bancos submersos e a migração de canais de maré. Imagem gerada por inteligência artificial a partir de descrições de processos geológicos. Elaborado por: Almir Costa.

3.2 Frosão fluviomarinha

O processo de erosão fluviomarinha é um fenômeno natural caracterizado pela remoção de sedimentos em função da complexa hidrodinâmica dos rios, das marés e da influência das chuvas em regiões estuarinas da zona costeira amazônica (Figura 3.8). Esse processo gera impactos sociais e econômicos significativos para as populações que vivem próximas aos canais estuarinos.

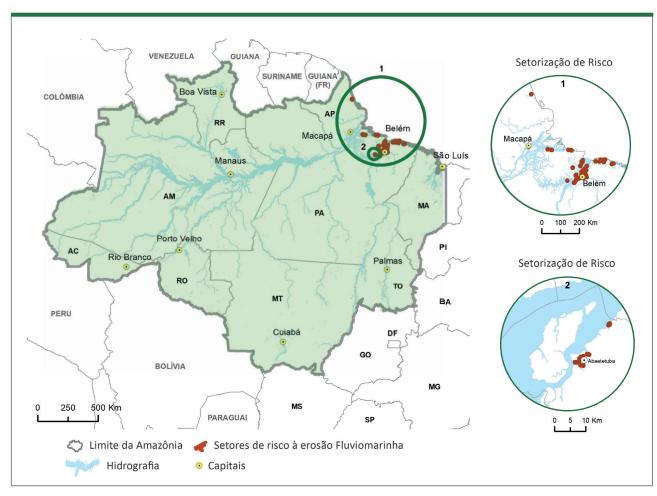


Figura 3.8: Localização dos setores com risco à erosão fluviomarinha, a partir de informações atualizadas e modificadas das cartografias de risco geológico. Fonte: Elaborado pelos autores.

Os canais estuarinos próximos à zona costeira recortam afloramentos do Grupo Barreiras, formando falésias ativas (como na costa nordeste do estado do Pará), enquanto os situados no interior dos estuários margeiam planícies de inundação e florestas de várzea. Esses rios apresentam elevadas vazões e são influenciados pelo regime de meso e macromarés, que avançam centenas de quilômetros rio acima.

A erosão fluviomarinha nas falésias ocorre, principalmente, durante as marés de sizígia equinociais (março e setembro), quando o nível d'água se eleva e as ondas atingem a base das falésias, fragilizando-a e provocando o solapamento das porções intermediária e superior. A presença de sulcos, ravinas e fendas intensificam a infiltração da água pluvial, favorecendo deslizamentos entre os meses de dezembro e maio. Tais exemplos podem ser observados na Ilha de Mosqueiro em Belém (PA) (Teixeira et al., 2021) e na Praia do 40 do Mocoóca no município de Maracanã (PA) (Bandeira; Fonseca, 2018; Teixeira; Bandeira, 2020) (Figura 3.9 e 3.10).

Além disso, a presença de moradias e estabelecimentos comerciais no topo das falésias contribui para a intensificação do processo erosivo, uma vez que o despejo de águas servidas por tubulações diretamente no terreno acelera a instabilidade (Figura 3.11).

As erosões fluviomarinhas nas porções internas dos canais estuarinos e nas planícies de inundação ocorrem de maneira localizada, resultantes da complexa hidrodinâmica de flutuação do nível d'água que combina a vazão fluvial e as correntes de maré.

Figura 3.9: Falésia submetida a processo de erosão fluviomarinha na Ilha de Mosqueiro (município de Belém, estado do Pará). Durante a preamar de sizígia, em março de 2023, o nível d'água atingiu a base da falésia. Fonte: Foto de SEURB – Prefeitura Municipal de Belém.

Figura 3.10: Esquema dos processos envolvidos no recuo das falésias: (A) Solapamento do topo em função da erosão da base da falésia pela ação da maré alta. (B) Ocorrência de deslizamentos no topo das falésias. Imagem gerada por inteligência artificial a partir de descrições de processos geológicos. Fonte: Elaborado por Almir Costa.

Essa flutuação intensifica a erosão de base, provocando o solapamento da parte superior das margens e infiltração de água nos solos síltico argiloso, como observado na margem do Distrito de Bailique (Município de Macapá, estado do Amapá) (Figura 3.12).

Além disso, a presença de aterros construídos pela população sem estudos geotécnicos contribui para a instabilidade das margens, que perdem resistência e se deslocam em direção ao rio, a exemplo do que ocorre na orla da cidade de Abaetetuba (município de Abaetetuba, estado do Pará) (Figura 3.13).

O processo de erosão provoca a perda de moradias e estabelecimentos comerciais, além de impactar a economia local, sobretudo nas cidades ribeirinhas, devido à destruição da infraestrutura urbana, como ruas, portos e torres de transmissão de energia, a exemplo do ocorrido em Abaetetuba, em 2023 (Fonseca; Melo Jr., 2023; Teixeira; Conceição; Queiroz, 2023).

Medidas mitigadoras baseadas em obras de engenharia, nesses casos, podem apresentar custos elevados. Entretanto, podem ser adotadas ações não estruturais, como a elaboração de mapas de suscetibilidade à erosão fluviomarinha, indicando as taxas anuais de recuo das margens e os locais mais adequados para a ocupação de famílias e empreendimentos turísticos; além da implementação de programas de educação ambiental e de orientação comunitária, visando a evitar a ocupação das margens dos rios.

Figura 3.11: Falésia submetida a processo de erosão fluviomarinha na Praia do 40 do Mocoóca (município de Maracanã, estado do Pará). Observa-se a destruição de casas localizadas no topo da falésia em decorrência da erosão. Fonte: Foto da Defesa Civil do Município de Maracanã.

Figura 3.12: Erosão de margem no Distrito de Bailique (município de Macapá, estado do Amapá), Foz do Rio Amazonas, que sofre influência das marés, registrada em setembro de 2023. Fonte: Foto de Edineuza Rosário, projeto SOAM/IEPA.

Figura 3.13: Erosão da margem do Rio Maratauíra, influenciado por regime de mesomarés, registrada em fevereiro de 2023, na cidade de Abaetetuba (município de Abaetetuba, estado do Pará). Fonte: Foto de Sheila Teixeira.

3.3 Erosão pluvial

Um dos processos naturais mais comuns na Amazônia é a erosão causada pelos altos índices pluviométricos (Figura 3.14). Esse fenômeno ocorre quando chuvas intensas e prolongadas removem ou desgastam a camada superficial dos solos, formando sulcos, ravinas e voçorocas. O processo pode ser intensificado por intervenções humanas no ambiente natural, como a remoção da cobertura vegetal e as alterações no sistema hídrico. A erosão torna-se uma área de risco quando interfere diretamente na ocupação urbana (Figura 3.15).

Os processos erosivos pluviais (ou erosão hídrica) na região amazônica frequentemente ocorrem em associação com outras tipologias como enxurradas e deslizamentos. Todos esses fenômenos são deflagrados por chuvas intensas, pelo

escoamento superficial e pela suscetibilidade das litologias e solos.

A avaliação da localização dos setores de risco indica que, em geral, eles se situam em áreas periféricas do núcleo urbano municipal (Figura 3.16).

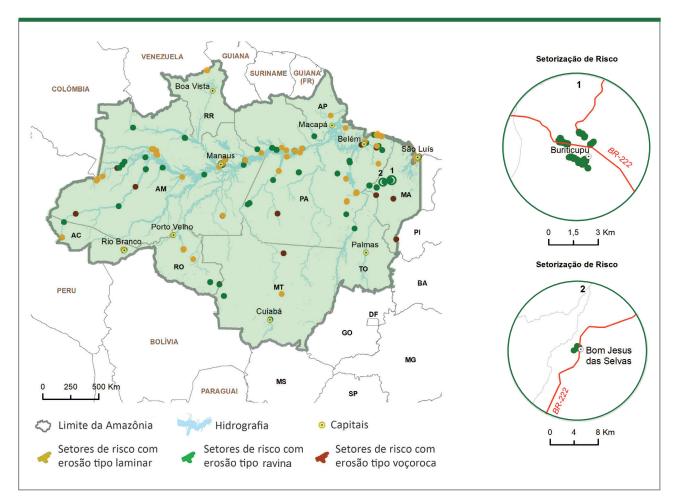


Figura 3.14: Localização dos setores de risco com erosão pluvial, a partir de informações atualizadas e modificadas das cartografias de risco geológico. Fonte: Elaborado pelos autores.

Figura 3.15: Voçoroca nas proximidades de moradias na cidade de Manaus, configurando área de risco. Fonte: Foto de Júlio Lana (2024).

Figura 3.16: Ravina localizada no município de São Luís, Maranhão. Fonte: Foto do acervo do projeto (2017).

Nesses locais, o sistema de drenagem superficial e subterrâneo é incipiente ou inexistente, o relevo apresenta declividade moderada a alta e, por vezes, inclui bordas de platô, encostas ou regiões de interflúvio (área mais elevada entre duas ou mais drenagens) (Figura 3.17). Nas porções periféricas, geralmente mais baixas que o núcleo urbano, ocorre o escoamento das águas superficiais em direção às drenagens naturais, como rios, córregos ou lagos, favorecendo a evolução progressiva do processo erosivo ao longo do tempo.

Os municípios de Buriticupu (MA), Açailândia (MA), São Luís (MA), Iranduba (AM) e Carauari (AM) apresentam um número significativo de pessoas afetadas por processos erosivos. Um fator comum entre esses locais é o tipo de substrato geológico, formado por rochas como arenitos, argilitos, siltitos e cascalhos, relativamente pouco resistentes à ação da água, ou por depósitos sedimentares inconsolidados, facilmente transportados pela chuva. Com o passar do tempo, a decomposição dessas rochas origina diferentes tipos de solos suscetíveis à erosão (Figura 3.18).

No município de Monte Alegre (PA), destacam--se feições erosivas como sulcos e ravinas, embora estas ocorram de forma secundária em relação a outros processos, como as enxurradas.

O regime pluviométrico, os tipos de solo, o relevo, a remoção da cobertura vegetal e o uso e ocupação do solo são fatores determinantes para a ocorrência de erosões pluviais na Amazônia.

O regime de chuvas é frequente e intenso, apresentando dois períodos distintos: um chuvoso, com elevada precipitação, e outro menos chuvoso, mas sem uma estação de seca definida (Souza; Ambrizzi, 2003). Os solos mais suscetíveis à erosão pluvial são de baixa coesão, geralmente arenosos, franco-arenosos ou siltosos, com pouca argila, alta porosidade e baixa retenção de água, características que favorecem a rápida infiltração e o escoamento superficial. Além disso, alguns solos amazônicos possuem baixo teor de matéria orgânica, o que reduz a sua estabilidade (Silva et al., 2021).

A inclinação do terreno também influencia diretamente na velocidade do fluxo superficial: áreas de maior declividade, como morros altos, relevos escarpados, bordas de platô, encostas e falésias, são altamente propícias à formação de feições erosivas.

A intervenção humana intensifica expressivamente os processos erosivos. A expansão urbana sem planejamento, a impermeabilização do solo, o aterramento, o desmatamento e as queimadas contribuem para a degradação do solo.

As feições erosivas são classificadas de acordo com sua severidade e mecanismos, de acordo com Almeida Filho (2014):

Erosão laminar: ocorre quando pequenas lâminas de água e o impacto das gotas de chuva removem as partículas superficiais do solo.

Sulcos erosivos: pequenas incisões rasas no solo, formadas em locais de maior concentração do fluxo de água.

Figura 3.17: Vocoroca ramificada no município de Buriticupu, MA. Fonte: Foto de Nelson Almeida (AFP) (2023).

Figura 3.18: Ravina em borda da encosta, município de Iranduba, Amazonas, 2019. Fonte: Foto de Elton Andretta.

Ravinas: evoluem a partir dos sulcos, atingindo maiores profundidades devido ao intenso fluxo de água superficial. Apresentam formato em "V", com comprimento superior à largura, podendo ou não apresentar ramificações. É o fenômeno que mais afeta moradias e estruturas urbanas amazônicas.

Voçorocas (ou Boçorocas): resultam da evolução das ravinas, aprofundando-se e atingindo o lençol freático. Seu avanço acelerado e complexo decorre da interação entre águas superficiais e subterrâneas. Nessa fase, pode ocorrer o piping, processo de remoção das partículas no interior do solo, que gera colapsos ampliando as voçorocas ou criando novos ramos (Salomão, 1999). Trata-se do segundo tipo de erosão pluvial mais impactante para moradias e estruturas urbanas na Amazônia.

As feições erosivas podem ocasionar perdas materiais e, em situações mais graves, perdas de vida humanas, sobretudo quando se desenvolvem em áreas próximas a ocupações ou infraestruturas. A desestabilização de encostas, provocando desmoronamentos – especialmente em terrenos inclinados e com pouca cobertura vegetal – pode levar também à perda de fertilidade do solo. Além disso, rios e lagos podem sofrer assoreamento, uma vez que o material erodido é transportado para os corpos d'água, reduzindo sua profundidade e capacidade de armazenamento, como ocorre no Igarapé Inhuma em Buriticupu, MA (Figura 3.19).

A crescente incidência de erosão pluvial tem ampliado as áreas de risco na Amazônia. Para mitigar seus efeitos recomenda-se:

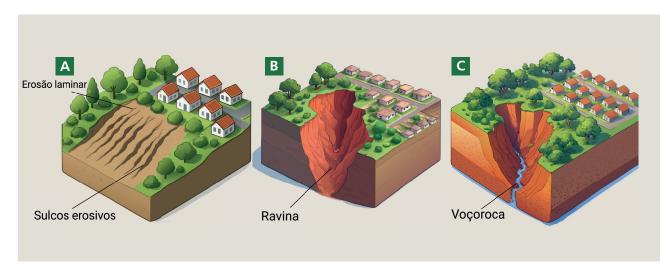


Figura 3.19: Tipos de processos erosivos causados pela chuva. Imagem gerada por inteligência artificial a partir de descrições de processos geológicos. Fonte: Elaborado por Almir Costa.

- A realização de estudos geotécnicos e hidrológicos para subsidiar a implantação de sistemas de drenagem pluvial e esgotamento sanitário, direcionando os fluxos de água de forma controlada;
- A fiscalização e a proibição de novas construções em áreas vulneráveis, a fim de conter a expansão desordenada e a ocupação irregular;
- A remoção das famílias residentes nas áreas mais críticas.

A integração dessas medidas, aliada a programas de educação ambiental, fortalece os processos de mitigação das áreas de risco.

3.4 Inundação

As cidades amazônicas se desenvolveram, em grande parte, às margens dos rios, aproveitando-os não apenas para o abastecimento de água e obtenção de alimentos, mas também como vias de transporte, escoamento da produção local e para atividades de lazer. Os rios sempre foram fundamentais para a vida, a cultura e a economia da região. No entanto, essa proximidade traz desafios, pois mudanças no nível da água — como subidas mais rápidas ou acima do normal — podem causar diversos transtornos em áreas habitadas (Figura 3.20), afetando principalmente as pessoas com maior vulnerabilidade social.

As variações nas vazões dos rios são processos naturais que ocorrem com maior ou menor intensidade, conforme o regime de chuvas e as características da bacia hidrográfica, como morfologia, solo, vegetação, entre outras.

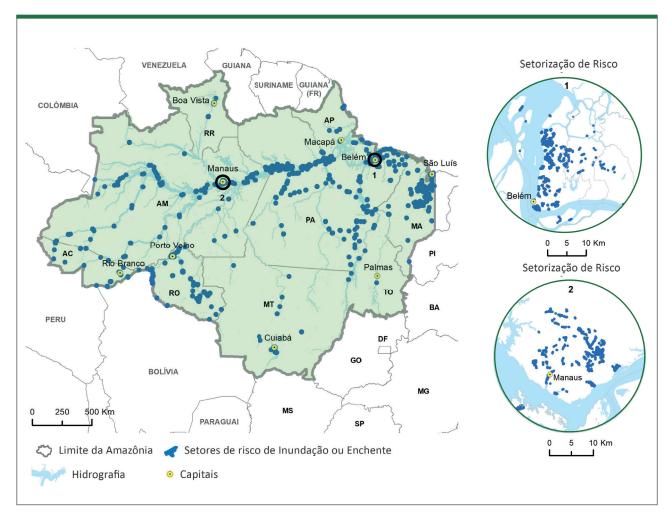


Figura 3.20: Localização dos setores de risco à inundação ou enchente, a partir de informações atualizadas e modificadas das cartografias de risco geológico. Fonte: Elaborado pelos autores.

Quando o volume de água aumenta e atinge a cota máxima do leito do rio, sem extravasar suas margens, o processo é chamado de enchente ou cheia. Nessa condição, não há necessariamente prejuízos, desde que os limites naturais dos rios sejam respeitados. A inundação ocorre quando as águas transbordam para áreas adjacentes, denominadas de planície de inundação, atingindo locais com presença de moradias, infraestrutura urbana ou atividades humanas (Figura 3.21). A ocupação inadequada desses espaços pode transformar um processo natural em um desastre, muitas vezes resultando em prejuízos materiais, riscos à saúde e perdas humanas.

As inundações são recorrentes na Amazônia e fortemente influenciadas por variações climáticas regionais e globais. Em geral, a elevação das águas dos rios amazônicos ocorre de forma lenta e previsível, mas varia significativamente em termos de tempo e espaço, sendo influenciada pela intensidade e distribuição das chuvas na bacia, além da topografia e da capacidade de armazenamento dos rios e áreas alagáveis (Figura 3.22).

O estado do Pará agrupa a maior parte da população atingida por inundações na Amazônia, em razão da maior densidade populacional dos centros urbanos situados em áreas ribeirinhas, como Belém, Marabá, Abaetetuba e municípios da região do Baixo Amazonas, entre eles Santarém, Prainha e Óbidos (Figura 3.23).

Cidades como Manaus, Rio Branco e São Luís são particularmente vulneráveis durante os períodos de cheia dos principais rios e respectivas bacias hidrográficas (Figura 3.24).

Os estados com menor número de pessoas afetadas são Roraima (cerca de 13 mil), Mato Grosso (pouco mais de 7 mil) e Tocantins (aproximadamente 1 mil). Esses dados podem refletir diferentes fatores, como a menor densidade populacional nas áreas de risco, a menor frequência de eventos extremos ou uma melhor estruturação urbana e de drenagem.



Figura 3.21: Ilustração de um perfil geomorfológico que indica as diferentes geoformas, os níveis de água de um rio e seus efeitos nas áreas próximas, assim como a suscetibilidade de cada tipo de relevo amazônico ao processo de inundação. Exemplo da extensa planície amazônica na região de Óbidos. Fonte: elaborado por Almir Costa e Íris Bandeira.

Ainda assim, é importante considerar que esses números podem variar ao longo do tempo, especialmente diante do avanço da urbanização e da intensificação dos eventos climáticos extremos.

Apesar das diferenças geográficas e climáticas que marcam a bacia amazônica, um aspecto comum entre as regiões é a ocorrência de cheias, predominantemente no período de março a junho (Figura 3.25).

Estudos indicam que as mudanças na temperatura dos oceanos Pacífico e Atlântico têm influenciado o aumento das chuvas na porção norte e central da bacia amazônica, especialmente desde o final da década de 1990 (Barichivich et al., 2018). Esse aumento, estimado em 17% entre 1981 e 2017 (Pivetta, 2019), contribui para que os rios alcancem níveis cada vez mais altos, elevando o risco e a severidade das inundações, resultando em grandes oscilações na área inundada ao longo dos anos. Em determinados trechos do Rio Amazonas, por exemplo, a planície de inundação pode atingir larguras de até 90 quilômetros.

As cidades situadas na foz do Rio Amazonas e na zona costeira enfrentam inundações causadas pelas meso e macromarés.

Na Amazônia, cerca de 48% das áreas de risco estão relacionadas a inundações ou enchentes. O Pará concentra o maior número de pessoas atingidas, aproximadamente 302 mil.

O risco de inundação ou enchente está relacionado à intensidade das chuvas, à ocupação das planícies e à precariedade dos sistemas de drenagem das cidades.

Geralmente, a população que habita as margens dos rios encontra-se em condições de alta vulnerabilidade.

Figura 3.22: Dados sobre a ocorrência de cheias e inundações na Amazônia. Ilustração gerada por inteligência artificia. Fonte: Elaborado por Gisele dos Anjos e Almir Costa.

Figura 3.23: (A) Inundação em Marabá (PA), causada pelo transbordamento do Rio Tocantins, em 2011. (B) Inundação em Óbidos (PA), devido à elevação do Rio Amazonas, em 2022. Fonte: Fotos: (A) Defesa Civil de Marabá; (B) Defesa Civil de Óbidos.

Figura 3.24: Inundações causadas em decorrência do transbordamento do Rio Amazonas em: (A) Anamã (AM), em 2021; (B) Envira (AM), em 2021 e; (C) Iranduba (AM), em 2025. (D) Inundação em Rio Branco (AC), provocada pelo extravasamento do Igarapé São Francisco, em 2023. Fonte: Fotos (A,B) Defesa Civil do Amazonas; (C) Elton Andretta; (D) Canal online AC24h.

Figura 3.25: Mapa com a localização dos principais rios da região amazônica e respectivos períodos de cheias e inundações. Fonte: Elaborado pelos autores.

Esses fenômenos ocorrem durante as preamares de sizígia, especialmente nos equinócios (março e setembro), e seus efeitos podem ser sentidos nas áreas urbanas por algumas horas, conforme o ciclo das marés. Em Belém, o fenômeno é intensificado pelas chuvas, especialmente no final de março e no início de abril. Essas condições naturais se agravam devido a problemas estruturais das cidades, como sistemas de drenagem urbana ineficientes, aterramentos e construções nas planícies de inundação e o acúmulo de lixo em canais e vias públicas, que obstruem o escoamento da água (Figura 3.26).

A Bacia do Amazonas impõe desafios significativos à gestão de riscos de cheias e inundações. A complexidade dos fenômenos naturais, associada à vulnerabilidade das populações ribeirinhas, exige uma abordagem integrada e contínua. Para antecipar eventos extremos e reduzir seus impactos, é essencial investir no monitoramento de variáveis hidrológicas, meteorológicas, oceanográficas e sociais, bem como no desenvolvimento de modelos de diagnóstico e previsão.

Figura 3.26: Registros de inundações por influência das marés na cidade de Belém: (A) Mercado Ver-o-Peso. região da Baía do Guajará; (B) Palafitas construídas sobre igarapé, em área periférica; (C) Transbordamento de canal urbano, região central da cidade. Fonte: Fotos de: (A) Filipe Bispo/LeiaJálmagens; (B) Sheila Teixeira; (C) Site Diário on line

Além disso, a conscientização e a adaptação das comunidades locais constituem estratégias indispensáveis para a implementação de soluções eficientes. Com uma compreensão detalhada das dinâmicas dos rios, torna-se possível formular políticas consistentes de mitigação e garantir maior segurança para as populações e para os ecossistemas amazônicos.

3.5 Movimento de massa

Os movimentos de massa correspondem ao deslocamento de materiais como solo, rochas ou sedimentos, encosta abaixo, ocasionado pela ação da gravidade, em áreas como morros e encostas inclinadas. Esse processo é influenciado pelo tipo de solo, ausência da cobertura vegetal, intervenções inadequadas nos terrenos, ocupação de áreas impróprias para habitação e períodos de chuvas intensas, que na Amazônia geralmente ocorrem de dezembro a maio. Trata-se da segunda maior ameaça geológica identificada pelo Serviço Geológico do Brasil (SGB-CPRM) nos municípios amazônicos.

Entre 2012 e 2024, o (SGB-CPRM) mapeou 1.066 áreas de risco a movimentos de massa na Amazônia, demonstrado na Figura 3.27, com aproximadamente 102.799 pessoas expostas a diferentes tipos de processos gravitacionais, como deslizamentos planares, queda de blocos e rastejo. As cidades de Manaus (AM), Parauapebas (PA), São Luís (MA) e Rio Branco (AC) concentram as maiores quantidades de áreas de risco a movimentos de massa.

3.5.1 Deslizamentos planares

Os deslizamentos planares correspondem a deslocamentos rápidos de massas de solo ou material inconsolidado ao longo de uma superfície de ruptura aproximadamente plana (Figuras 3.28 e 3.29). Esses eventos ocorrem após a saturação do solo por chuvas intensas e são comuns em encostas com declividade moderada a acentuada, especialmente em áreas urbanizadas, onde há cortes em encostas, aterros ou ocupações desordenadas. Mesmo em terrenos de declividade moderada ou baixa, e em solos naturalmente resistentes, essas alterações tornam o solo instável e mais propenso a deslizamentos.

Esse é o tipo de movimento de massa que oferece maior risco para as populações da Amazônia, com mais de 100 mil pessoas expostas. Foi identificado nos estados do Amazonas, Amapá, Pará, Rondônia, Roraima, Acre, Maranhão e Mato Grosso.

Em municípios da região do Baixo Amazonas, como Santarém (PA), Alenquer (PA), Monte Alegre (PA) e Óbidos (PA), além da cidade de Manaus (AM), os deslizamentos estão associados à interferência antrópica e às características dos solos derivados de camadas horizontais de arenitos e argilitos pertencentes à Formação Alter do Chão. Esses materiais são altamente friáveis e erodíveis (Figura 3.30).

Nos municípios de Parauapebas (PA), Rio Branco (AC), Presidente Figueiredo (AM) e nas zonas norte e leste de Manaus (AM), parte do relevo apresenta altitudes e declividades mais elevadas. Quando essa condição natural se associa ao corte de encostas para nivelamento de terrenos destinados à construção, o equilíbrio topográfico é significativamente alterado. Como consequência, é comum o surgimento de taludes instáveis, escorregamentos e deslizamentos durante períodos de chuvas intensas, muitas vezes representando risco direto para a população residente (Figura 3.31), observa-se que a intervenção acentua a instabilidade do talude e eleva o risco de escorregamentos em períodos chuvosos.

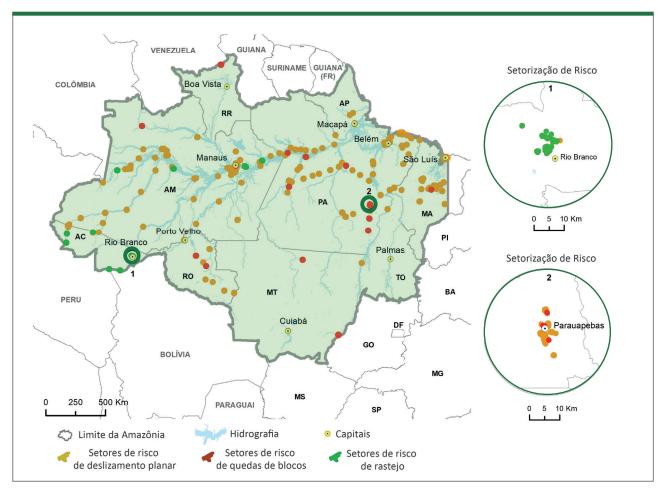


Figura 3.27: Localização das áreas com risco alto e muito alto a movimentos de massa do deslizamento planar, queda blocos e rastejo, a partir de informações atualizadas e modificadas das cartografias de risco geológico. Fonte: Elaborado pelos autores.

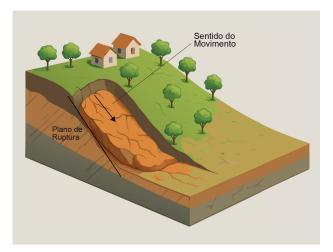


Figura 3.28: Bloco-diagrama representando processo de deslizamento planar. Imagem gerada por inteligência artificial a partir de descrições de processos geológicos. Fonte: Elaborado por Almir Costa (2025).

Figura 3.29: Área de risco de deslizamento planar. Parauapebas-PA. Fonte: Foto do acervo do projeto (2019).

Figura 3.30: Deslizamento planar em solo friável, Manaus (AM). Fonte: Foto da Defesa Civil de Manaus (2025).

Figura 3.31: Corte em encosta para construção em área inclinada no município de Parauapebas (PA). Fonte: Foto do acervo do projeto (2022).

Na região amazônica é comum a construção de residências na base dos barrancos situados nas margens de rios (Figura 3.32). Cursos d'água, como o Negro, o Amazonas e o Acre, formam escarpas fluviais de grande altura e acentuado grau de inclinação, compostas por camadas de arenito e argilito, que tendem a ser instáveis e estão sujeitas à erosão e deslizamentos. A retirada de material para utilização em aterros agrava ainda mais a situação, comprometendo a estabilidade das encostas e ampliando o risco de deslizamentos planares.

Figura 3.32: Moradias instaladas sobre escarpa fluvial instável na zona leste de Manaus (AM). Fonte: Foto da Defesa Civil de Manaus (2025).

3.5.2 Rastejo

O rastejo é um movimento lento e progressivo, caracterizado por deslocamento gradual das camadas superficiais de solos argilosos expansivos, em encostas suaves de baixa declividade,

favorecido por variações de umidade e temperatura. Esse processo tem potencial de causar deformações em edificações, rachaduras em paredes, muros e pavimentos, além de inclinação de vegetação, cercas e postes (Figura 3.33). Foi identificado em municípios do Acre, como Epitaciolândia, Marechal Thaumaturgo, Porto Velho, Rio Branco (Figura 3.34), Assis Brasil, Tarauacá e do Amazonas, como Itapiranga, São Paulo de Olivença e Itacoatiara.

3.5.3 Oueda de blocos

A queda de blocos consiste no desprendimento abrupto e de alta energia de fragmentos de rocha, geralmente a partir de escarpas, paredões ou cortes íngremes do terreno. Esse processo representa risco direto à vida humana e às estruturas localizadas na base das encostas (Figura 3.35). Foi identificado nos estados de Roraima, Pará (Figura 3.36), Amazonas, Maranhão, Mato Grosso e Rondônia.

A ocorrência de movimentos de massa na Amazônia enfrenta diversos desafios relacionados à sua previsibilidade, impacto e mitigação. A eficácia na antecipação desses eventos é limitada por fatores como a infraestrutura insuficiente de monitoramento, a ocupação desordenada do solo e as características naturais da paisagem. A baixa densidade de estações meteorológicas e pluviométricas compromete a precisão dos alertas, especialmente em escala local. Em muitos pontos da região, não há coleta contínua de dados de chuva, o que dificulta o uso de modelos com limiares de risco bem definidos.

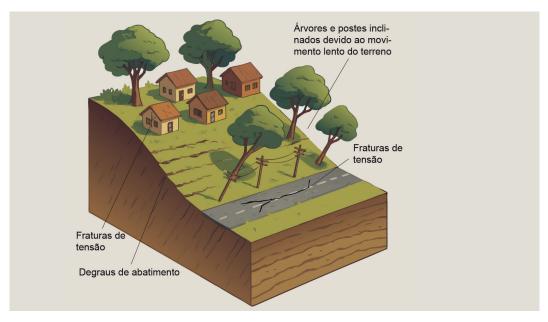


Figura 3.33: Bloco-diagrama representando o processo de rastejo em uma encosta. Fonte: Imagem gerada por inteligência artificial a partir de descrições de processos geológicos. Fonte: Elaborado por Almir Costa.

Figura 3.34: Movimento de rastejo na cidade de Rio Branco, estado do Acre, em 2023. Fonte: Foto de Elton R. Andretta.

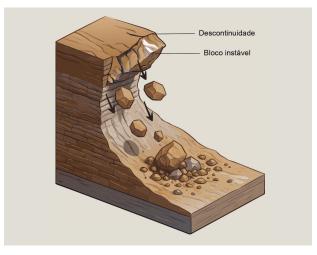


Figura 3.35: Bloco-diagrama representando processo de queda de blocos. Imagem gerada por inteligência artificial a partir de descrições de processos geológicos. Fonte: Elaborado por Almir Costa.

Além disso, a baixa densidade populacional em algumas áreas de risco faz com que muitos deslizamentos ocorram em locais remotos, sem impactos diretos à população, reduzindo o interesse por estudos mais aprofundados e a documentação sistemática desses eventos.

Nas cidades amazônicas de médio e grande porte, como Manaus, Belém e São Luís e Santarém, observa-se a expansão de bairros sobre encostas e terrenos instáveis, geralmente sem planejamento urbano ou infraestrutura adequada. Nessas áreas, o risco geotécnico é elevado, mas os registros históricos ainda são escassos. A densa cobertura vegetal da Floresta Amazônica também dificulta a identificação visual de sinais de instabilidade, como cicatrizes de deslizamento ou alterações no relevo, sendo necessário recorrer a tecnologias, como sensores remotos ativos ou radar de penetração para detectar essas feições.

Figura 3.36: Moradias construídas em área com presença de blocos rochosos instáveis, que podem atingir as residências situadas abaixo. Parauapebas (PA), 2019. Fonte: Foto do acervo do projeto (2019).

Os impactos dos movimentos de massa vêm se intensificando, sobretudo em áreas urbanas e periurbanas marcadas pela expansão desordenada. Processos como deslizamentos planares, queda de blocos e rastejo têm provocado diversos prejuízos sociais e econômicos. As principais consequências incluem danos a moradias localizadas em encostas ou margens de rios, perda de bens, isolamento e comunidades e, em casos extremos, vítimas fatais. As estruturas afetadas frequentemente apresentam rachaduras, abatimentos ou colapsos, o que exige ações emergenciais, como a remoção de famílias e intervenções por parte da Defesa Civil e de outros órgãos públicos.

Nesse contexto, torna-se fundamental investir em mapeamento contínuo das áreas de risco, aliado a políticas habitacionais seguras, infraestrutura adequada e planejamento urbano orientado para a sustentabilidade. A mitigação desses riscos depende de ações estruturais e preventivas que considerem a realidade socioambiental da região, reduzindo a vulnerabilidade da população amazônica diante desses processos naturais intensificados pela ação humana.

3.6 Terras caídas

Terras caídas é um termo utilizado para descrever os desmoronamentos e deslizamentos de terra, associados a intensos processos de erosão fluvial, que provocam danos sociais e econômicos e, em casos extremos, a perda de vidas dos povos ribeirinhos amazônicos (Carvalho, 2006; Bandeira et al., 2018, 2021).

Entre 2012 a 2024, o Serviço Geológico do Brasil (SGB-CPRM) identificou, 254 áreas com evidência de risco de "terras caídas" (Figura 3.37), onde aproximadamente 78.000 mil pessoas vivem nas margens de rios com alta suscetibilidade a processos erosivos.

As terras caídas ocorrem nas margens dos grandes rios amazônicos (Figura 3.38 sobretudo em terrenos

pouco consolidados, associados a rios com alta concentração de sedimentos, também chamados "rios de água branca" (Sioli, 1950), ex. rio Amazonas, Solimões, Juruá, Acre, Japurá, Jutaí, Madeira, Purus e Envira. São menos frequentes nas margens dos rios de "água preta" (como o Rio Negro) e de "água clara" (como o Rio Tapajós).

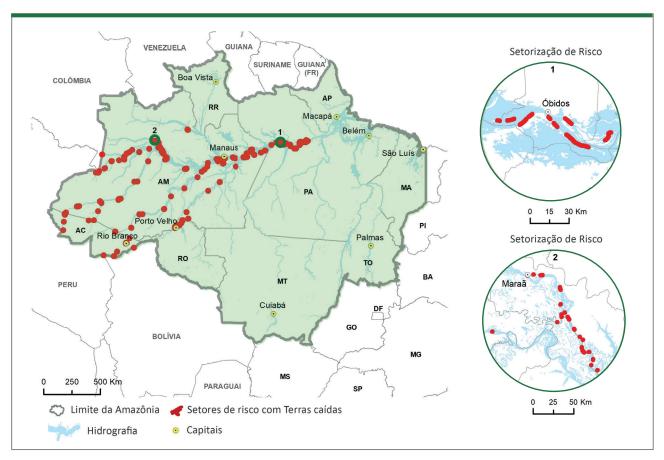


Figura 3.37: Localização das áreas com risco alto e muito alto a terras caídas, a partir de informações atualizadas e modificadas das cartografias de risco geológico. Fonte: Elaborado pelos autores.

Figura 3.38: Cicatrizes de Terras Caídas no porto de Manacapuru às margens do rio Solimões em outubro de 2024. Fonte: Foto de Gilmar Honorato.

Esse processo está condicionado a fatores como a geomorfologia fluvial, variação do nível da água ao longo do ano, velocidade do fluxo do rio, geologia local, bem como ondas provocadas por embarcações e ventos (conhecidas regionalmente como "banzeiro").

Durante as enchentes, a elevação do nível das águas e a inundação das planícies marginais saturam o solo, cujo peso adicional facilita o solapamento das encostas (Figura 3.39A). Já na estiagem, a redução da pressão exercida pelo rio, em função do rebaixamento do nível da água, favorece o desencadeamento de escorregamentos (Figura 3.39C). Em períodos intermediários, quando o nível se encontra entre a cheia e a seca, a erosão fluvial atua na porção mais profunda do talude marginal, levando ao desabamento da porção superior (Figura 3.39B) por efeito da gravidade (Bandeira et al., 2018).

As características do solo influenciam o tipo de movimento, que pode evoluir de forma lenta, como no caso do rastejo (Figura 3.39 D), mas ainda assim comprometer a instabilidade do terreno e afetar fundações de moradias, orlas e portos (Bandeira et al., 2018).

Muitas vezes, processos de erosão e deslizamentos estão inter-relacionados. Em uma mesma margem fluvial podem ser observadas erosões causadas pela alta velocidade da corrente, associadas a movimentos de massa, causando rachaduras e degraus de abatimento no terreno, assim como inclinação de árvores e outras feições erosivas (Bandeira et al., 2018).

Outro processo recorrente é erosão em patamares (Figura 3.40), que ocorre à medida que o rio sobe ou desce, erodindo camadas pouco consolidadas por meio da abrasão.

As famílias que habitam áreas de risco a terras caídas estão sujeitas a inúmeras consequências, como a perda de plantações, animais, móveis e eletrodomésticos, além de custos com mudança de moradia e aquisição de novos terrenos. Soma-se a isso o risco de morte, relacionado ao desmoronamento da terra que pode atingir casas sobre palafitas. Esses eventos também representam perigo para as casas flutuantes e embarcações atracadas às margens dos rios, que podem ser impactadas pelo material desmoronado. O processo ainda pode ocasionar acidentes em áreas portuárias, caso a instalação dessas estruturas não considere a dinâmica fluvial.

O elevado custo das obras de contenção em rios muito dinâmicos reforça a necessidade de elaborar mapas de suscetibilidade a terras caídas, com o objetivo de identificar os locais mais adequados para ocupação, construção de estruturas de contenção e realocação de famílias que vivem em áreas classificadas de risco alto ou muito alto. Além disso, é fundamental que os municípios desenvolvam programas de educação ambiental voltados tanto para crianças em idade escolar quanto para adultos, por meio de centros comunitários, orientando sobre os perigos da ocupação de áreas inadequadas para moradias. A elaboração de planos de contingência que integrem as zonas rural e urbana é igualmente necessária, a fim de ampliar a capacidade de resposta e a prevenção de desastres.

Figura 3.39: (A) Esquema ilustrativo exibindo o processo de terras caídas, no período de cheia dos rios amazônicos e, abaixo imagem da margem esquerda do Rio Amazonas, município de Óbidos, estado do Pará, com feições erosivas associadas à erosão marginal e movimento de massa (2023); (B) Esquema ilustrativo exibindo a erosão fluvial na base do talude marginal e evidências de rachaduras no topo, indicando alta suscetibilidade à queda de material e, abaixo imagem exibindo as terras caídas na margem esquerda Rio Purus, município Boca do Acre, estado do Acre (2021); (C) Esquema ilustrativo mostrando risco de moradia no topo do barranco e casa flutuante de serem atingidas por terras caídas e, abaixo imagem exibindo o deslizamento nas margens do Rio Juruá, município Cruzeiro do Sul, Acre (2015); (D) Esquema ilustrativo de casa com alta vulnerabilidade social em risco de ser atingida por terras caídas e, abaixo imagem de depósitos aluvionares do Rio Acre, submetidos a processos de rastejo, no município de Brasiléia, Acre (2015). Fonte: (A), (B), (C) e (D) Esquemas ilustrativos elaborados por Almir Costa e Íris Bandeira. Imagens: (A) Foto de Íris Bandeira; (B) Foto retirada de G1 Amazonas (2021); (C) Foto de Renato Ribeiro Mendonça e (D) Foto de Adamy (2015, p. 35).

Figura 3.40: Erosão fluvial em patamares, com cicatrizes de deslizamentos na margem do Rio Amazonas, município de Juruti (PA), 2023. Fonte: Foto de Íris Bandeira.

■ 4. Processos peculiares da Amazônia

4.1 Ilhas flutuantes

Em alguns trechos das florestas de várzea, ocorre a aderência de raízes e caules de espécies conhecidas popularmente como mururé, mururézinho, anhinga e canarana aos sedimentos em suspensão dos rios. A erosão fluviomarinha, associada à ação do vento sobre as folhas, desprende essas porções das margens dos canais estuarinos vegetados, formando "ilhas flutuantes" com substrato pouco profundo. Essas ilhas são então deslocadas para o canal principal e transportadas por longas distâncias em direção a jusante, como registrado nos municípios de Porto de Moz e Afuá, estado do Pará, entre 2018 e 2025 (Figuras 4.1, 4.2 e 4.3).

Figura 4.1: Ilha flutuante (delimitada pela linha tracejada amarela) isolando uma comunidade no município de Porto de Moz (PA), 2018. Fonte: Foto da Defesa Civil do Estado do Pará.

Figura 4.2: Detalhe da vegetação de ilha flutuante no município de Porto de Moz (PA), 2018. Fonte: Foto da Defesa Civil do Estado do Pará.

Figura 4.3: Ilha flutuante (delimitada pela linha tracejada amarela) obstruindo a navegação no Rio Juçara, afluente do Rio Xingu, no município de Porto de Moz (PA), 2025. Fonte: Foto de Ronis Cley Fontes da Silva.

As ilhas flutuantes podem acarretar sérios prejuízos estruturais em orlas urbanas, além de obstruir a drenagem fluvial, dificultando ou mesmo impedindo temporariamente a navegação e promovendo o isolamento de comunidades ribeirinhas.

Recomenda-se a elaboração de mapas de suscetibilidade à erosão fluviomarinha, com a identificação de trechos de margens vegetados por florestas de várzea.

4.2 Terras crescidas

Terras crescidas é um termo utilizado na Amazônia para identificar áreas formadas pelo acúmulo de partículas trazidas pelo rio, resultando em extensas disposições laterais (Figura 4.4) ou na elevação no terreno em áreas de várzea (Figura 4.5) (Fonseca; Bandeira, 2022).

Figura 4.4: Sedimentação marginal na margem esquerda do Rio Amazonas (2024). Município de Óbidos (PA). Fonte: Foto de Íris Bandeira.

Esse processo de acresção pode levar comunidades ribeirinhas a perderem propriedades e plantações, além de provocar isolamento em função do aumento da distância em relação à margem do rio (Nagel et al., 2022; Zumak et al., 2025). As terras crescidas ocorrem nas planícies fluviais, geralmente associadas a rios com alta concentração de sedimentos.

Figura 4.5: Sede da comunidade Boca de Cima do Aritapera - Santarém (PA), aterrada por sedimentos trazidos pela cheia do Rio Amazonas, em maio de 2021. Fonte: Foto de Íris Bandeira.

■ 5. Vulnerabilidade e adaptação: componentes essenciais dos desastres na Amazônia

Os riscos e desastres na região amazônica do Brasil não resultam unicamente da ação de eventos naturais associados a processos geológicos e hidrológicos. Eles são fortemente influenciados pelas condições de vulnerabilidade da população e pelas atividades sociais e econômicas, que podem amplificar os impactos e/ou reduzir a capacidade de enfrentamento. A vulnerabilidade diante de riscos de desastres naturais é definida como o conjunto de características de uma pessoa, grupo ou comunidade e de seu entorno, que influencia sua capacidade de antecipar, enfrentar, resistir e recuperar-se dos impactos dos impactos.

Diferentemente das ameaças associadas a processos naturais, a vulnerabilidade está ligada a fatores intrínsecos das pessoas - como as condições de saúde e a aspectos estruturais da sociedade, relacionados às suas decisões e ações. Entre eles, destacam-se a forma como as cidades são planejadas, a escolha dos materiais de construção das residências, a eficiência das instituições de apoio humanitário e a disponibilidade de recursos financeiros para prevenção e resposta.

Diversos fatores condicionam a vulnerabilidade. As pessoas ficam expostas a riscos quando moram, trabalham ou circulam em áreas sujeitas a ameaças. Essa situação é agravada por condições sociais e econômicas desfavoráveis e também depende da capacidade das instituições e da própria comunidade em reagir e se recuperar dos impactos. Esses três elementos — exposição, sensibilidade e capacidade de resposta — evidenciam heterogeneidades espaciais e temporais que se tornam ainda mais evidentes diante das condições e especificidades da região amazônica.

A Amazônia apresenta crescimento demográfico constante, alcançando aproximadamente 17,5 milhões de habitantes em 2022. Ainda assim, é a região com menor população absoluta e densidade demográfica do país (4,5 hab./km²). A maior parte da população vive em áreas urbanas, concentrada nas capitais estaduais. Nessas cidades e também em povoados menores, a sociedade amazônica encontra-se exposta a ameaças naturais em função de um processo histórico de ocupação e expansão em áreas próximas às margens fluviais e estuarinas e, mais recentemente, em zonas ligadas à mineração e à agropecuária. Nas grandes e médias cidades, uma parcela significativa dos moradores vive em áreas de expansão dos centros históricos, em favelas, encostas instáveis ou terrenos baixos, sujeitos a inundações recorrentes e excepcionais, o que aumenta ainda mais as condições de vulnerabilidade.

As condições de sensibilidade da população amazônica são elevadas, aumentando a possibilidade de ser afetada por ameaças naturais. Isso se deve a fatores históricos e econômicos que tornaram a Amazônia a região menos desenvolvida social e economicamente do país. Em comparação com outras regiões brasileiras, a renda per capita é mais baixa, enquanto as taxas de analfabetismo, mortalidade infantil, precariedade nos serviços de saúde e a proporção de crianças com menos de 9 anos são mais altas.

A capacidade de resposta na Amazônia apresenta características próprias. As ações preventivas, preparatórias, emergenciais e de reconstrução são planejadas e implementadas pelos diferentes níveis de governo, em conformidade com a Política Nacional de Proteção e Defesa Civil (Lei nº 12.608/2012) e com os Planos Diretores Municipais. Entretanto, muitas coordenadorias municipais de proteção e defesa civil, quando existem, não funcionam plenamente, e a legislação urbana encontra dificuldades de aplicação. Por outro lado, destaca-se a capacidade autônoma dos moradores em se adaptar aos riscos e desastres naturais. Contudo, essas adaptações não configuram soluções efetivas, mas sim estratégias de convivência com os desastres, que atenuam temporariamente os impactos sem eliminar o risco, mantendo moradores em situação de vulnerabilidade e, por vezes, criando novos problemas sociais e geotécnicos.

A principal forma de adaptação às inundações nas planícies marginais aos rios está associada à elevação do nível topográfico dos terrenos, casas e ruas. Áreas úmidas, baixas e potencialmente inundáveis, assim como pequenos canais, são aterradas pela população com materiais orgânicos disponíveis, como resíduos de madeira, serragem e caroços de açaí. Essa elevação do terreno disponibiliza novas áreas para a ocupação urbana e incentiva tanto a substituição de materiais construtivos (ex. madeira por tijolos) quanto uma verticalização incipiente. Os solos compostos principalmente por esses materiais, oriundos das dinâmicas

econômicas locais, apresentam baixa resistência ao suporte de carga, adensando-se lentamente de forma diferencial ou colapsando rapidamente sob a ação das chuvas ou da maré. O resultado manifesta-se em trincas nos solos e construções parcial ou totalmente destruídas. Essas ocorrências têm sido identificadas pelo SGB-CPRM, entre outras cidades, em Paragominas (PA) (Figura 5.1) e Abaetetuba (PA) (Figuras 5.2 e 5.3).

As residências se se adaptam às mudanças do nível das águas dos rios amazônicos, particularmente em eventos de inundação lenta e muitas vezes de sazonalidade conhecida. As formas de resposta dos moradores ribeirinhos estão associadas à construção de moradias acima do nível das águas, à flutuação das casas, e à elevação de seus pisos.

Figura 5.1: Perfil de solo antrópico aterrado com resíduos de madeira, serragem e moinha, utilizado para moradia e exposto após forte enxurrada. Município de Paragominas (PA), 2017. Fonte: Foto de Dianne Fonseca e Luciana Miyagawa.

Figura 5.2: Perfil de solo antrópico formado por caroços de açaí, resíduos de madeira e lixo urbano, utilizado para moradia e exposto após colapso do aterro. Município de Abaetetuba (PA). 2014. Fonte: Foto de Dianne Fonseca.

Figura 5.3: Área aterrada com caroços de açaí, resíduos de madeira e lixo urbano, utilizada para ocupação urbana. O colapso do solo resultou na destruição das moradias. Município de Abaetetuba (PA), 2014. Fonte: Foto de Dianne Fonseca.

Localmente chamadas de palafitas (Figura 5.4), essas casas são erguidas sobre estruturas de estacas com altura superior à cota máxima da inundação recorrente; contudo, em eventos extremos, podem ser atingidas pelas águas. Também se adaptam à variação do nível d'água dos rios pequenas criações de animais, e hortas flutuantes (Figura 5.5). As marombas (Figura 5.6), como são conhecidas localmente, consistem em pisos das casas que são elevados de forma episódica, à medida que o nível dos rios sobe, permitindo preservar tanto as pessoas quanto o mobiliário dos efeitos das inundações.

Para facilitar a locomoção da população em algumas cidades amazônicas, o poder público constrói, de forma temporária sistemas de pontes e passarelas

de madeira, posicionados acima do nível das águas durante as inundações periódicas (Figura 5.7).

A migração temporária da população constitui uma forma de adaptação às inundações. Nessas situações, as pessoas são deslocadas para áreas não atingidas, como residências de familiares, casas de amigos ou abrigos públicos. Em determinados casos, toda a moradia é transportada para outro local (Figura 5.8).

Na Amazônia, o processo de ocupação urbana em áreas alagáveis, como várzeas e planícies de inundação, tem se caracterizado por práticas adaptativas que, embora funcionais em um primeiro momento, acabam por gerar situações de risco geotécnico e social a médio e longo prazos.

Figura 5.4: Casa sobre palafita utilizada para moradia em área sujeita a inundações fluviais. Município de Manacapuru (AM), 2008. Fonte: Foto de Sheila Teixeira.

Figura 5.5: Casa com horta flutuante utilizada para moradia em área sujeita à variação do nível dos rios. Município de Manacapuru (AM), 2008. Fonte: Foto de Sheila Teixeira.

Esses exemplos evidenciam uma lógica de ocupação baseada na improvisação de técnicas de adaptação ao ambiente alagado, frequentemente sem acompanhamento técnico, o que resulta em instabilidade do terreno e aumento da vulnerabilidade urbana. Assim, a urbanização amazônica, embora marcada pela criatividade e pelo uso de materiais disponíveis localmente, necessita urgentemente de políticas públicas de ordenamento urbano, infraestrutura de drenagem e gestão territorial que considerem a geodinâmica regional e a segurança das populações.

5.6: Maromba construída no interior de residência como forma de convivência com inundações fluviais. Cidade de Manaus (AM), 2025. Fonte: Foto de Patrick Marques (Marques, 2025).

Figura 5.7: Sistema provisório de pontes construído para a locomoção da população durante inundação urbana. Município de Coari (AM), 2022. Fonte: Foto da Defesa Civil do Amazonas.

Figura 5.8: Deslocamento de uma residência inteira por via fluvial como medida emergencial de adaptação durante inundação. Município de Coari (AM), sem data. Fonte: Foto da Defesa Civil de Manaus.

6. Conclusão

A Amazônia concentra uma ampla variedade de ameaças geológicas e hidrológicas. Foram identificados 2.693 setores de risco, nos quais cerca de 1,47 milhão de pessoas (5,2% da população regional) vivem em condição de risco alto ou muito alto, com destaque para os estados do Pará e do Amazonas, que reúnem a maior parte dessas ocorrências.

Ilhas flutuantes e "terras crescidas" constituem fenômenos singulares da Amazônia que afetam parte da população ribeirinha, mas ainda carecem de mais estudos aprofundados para melhor compreensão.

A magnitude dos impactos é potencializada por vulnerabilidades sociais e urbanísticas, como a ocupação desordenada de planícies de inundação e encostas, os aterros realizados com materiais inadequados e os sistemas de drenagem precários, em um contexto de monitoramento hidrometeorológico insuficiente.

A variabilidade climática recente, marcada pelo aumento das chuvas no norte da bacia, tem intensificado as inundações nas cidades localizadas às margens dos grandes rios amazônicos.

Diante desse cenário, impõem-se prioridades claras: mapeamento e monitoramento contínuos; definição de zonas de não edificação em margens fluviais e no topo de falésias; ampliação da drenagem urbana; educação ambiental; e reassentamento de famílias em risco alto e muito alto.

A resposta mais eficaz combina soluções de engenharia — estabilização de taludes, contenções e sistemas de drenagem — com estratégias baseadas na natureza, revegetação, restauração de Áreas de Preservação Permanente ciliares e de manguezais, articuladas ao fortalecimento da Defesa Civil e a um planejamento territorial integrado e de longo prazo. Essa integração é essencial para reduzir perdas humanas e materiais e aumentar a resiliência das cidades e comunidades ribeirinhas da Amazônia.

RFFFRÊNCIAS

ADAMY, A. (org.). Geodiversidade do estado do Acre. Porto Velho: CPRM, 2015. p. 35. Programa Geologia do Brasil. Levantamento da Geodiversidade. Disponível em: https://rigeo.sgb.gov.br/handle/doc/15690. Acesso em: 23 set. 2025.

ALMEIDA FILHO, G. S. Uso das terminologias de processos erosivos lineares dos tipos ravina e voçoroca. **Revista Geonorte**, v. 5, n. 23, p. 693–699, 2014. Edição especial 4. Disponível em: https://www.periodicos.ufam.edu.br/index.php/ revista-geonorte/article/view/1790/1674. Acesso em: 23 set. 2025.

BANDEIRA, I. C. N.; ADAMY, A.; ANDRETTA, E. R.; CONCEIÇÃO, R. A. C. da; ANDRADE, M. M. N. de. Terras caídas: fluvial erosion or distinct phenomenon in the Amazon? **Environmental Earth Sciences**, v. 77, n. 222, 2018. DOI: https:// doi.org/10.1007/s12665-018-7405-7. Disponível em: https://link.springer.com/ article/10.1007/s12665-018-7405-7. Acesso em: 23 set. 2018.

BANDEIRA, I. C. N.; CONCEIÇÃO, R. A. C. da; ANDRADE, M. M. N. de; TEIXEIRA, S. G.; FONSECA, D. D. F.; LIMA, J. B. M. de; AZAMBUJA, A. M. S. de; GREGÓRIO, A. M. da S.; MIYAGAWA, L. de J. P. P.; SILVA, S. T. T. da; AGUIAR, P. A. P. Fluvial erosion risk analysis: an Amazon study case. **Revista Geonorte**, v. 12, n. 39, p. 1–25, 2021. DOI: https://doi.org/10.21170/geonorte.2021.V.12.N.39.01.25. Disponível em: https://www.periodicos.ufam.edu.br/index.php/revista-geonorte/ article/view/8380. Acesso em: 23 set. 2025.

BANDEIRA, I. C. N.; FONSECA, D. D. F. Setorização de áreas em alto e muito alto risco a movimentos de massa, enchentes e inundações: Maracanã, Pará. Belém: Serviço Geológico do Brasil – CPRM, 2018. 19 p. Disponível em: https:// rigeo.sgb.gov.br/handle/doc/18337. Acesso em: 23 set. 2025.

BARICHIVICH, J.; GLOOR, E.; PEYLIN, P.; BRIENEN, R. J. W.; SCHONGART, J.; ESPINOZA, J. C.; PATTNAYAK, K. C. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, v. 4, n. 9, eaat8785, 2018. DOI: 10.1126/sciadv.aat8785. Disponível em: https://www. science.org/doi/10.1126/sciadv.aat8785. Acesso em: 29 set. 2025.

CARVALHO, J. A. L. Terras caídas e consequências sociais: Costa do Miracauera-Paraná da Trindade, município de Itacoatiara-AM, Brasil. 2006. 141 f. Dissertação (Mestrado em Sociedade e Cultura na Amazônia) - Universidade Federal do Amazonas, Manaus, 2006.

FONSECA, D. D. F.; BANDEIRA, I. C. Setorização de áreas de risco geológico: Santarém, Pará. [S.I.]: CPRM, 2022. Disponível em: http://rigeo.sgb.gov.br/jspui/ handle/doc/22704. Acesso em: 15 jun. 2024.

FONSECA, D. D. F.; CONCEIÇÃO, R. A. C.; ASP NETO, N. E. Ação emergencial para delimitação de áreas em alto e muito alto risco a enchentes e movimentos de massa: Bragança, Pará. Belém, Brasil: CPRM, 37 p. Disponível em: http://rigeo. cprm.gov.br/jspui/handle/doc/18316. Acesso em: 15 mar. 2025.

FONSECA, D. D. F.; MELO JÚNIOR, H. R. de. Avaliação técnica pós-desastre: Abaetetuba, Pará. Belém: Serviço Geológico do Brasil – CPRM, 2023.17 p. Disponível em: https://rigeo.sgb.gov.br/handle/doc/23688. Acesso em: 4 jul. 2025.

G1 Amazonas. Boca do Acre decreta situação de emergência após aumento do fenômeno 'terras caídas' no AM. **G1 AM**, 29/04/2021. Disponível em: https:// g1.globo.com/am/amazonas/noticia/2021/04/29/boca-do-acre-decretasituacao-de-emergencia-apos-aumento-do-fenomeno-terras-caidas-no-am. ghtml. Acesso em: 23 set. 2025.

MARQUES, Patrick. Cheia do Rio Negro começa a inundar casas de palafita em Manaus. **G1 AM**, 21/04/2021. Disponível em: https://g1.globo.com/am/ amazonas/noticia/2021/04/21/cheia-do-rio-negro-comeca-a-inundar-casas-depalafita-em-manaus.ghtml. Acesso em: 8 out. 2025.

NAGEL, G. W.; NOVO, E. M. L. de M.; MARTINS, V. S.; CAMPOS-SILVA, J. V.; BARBOSA, C. C. F.; BONNET, M. P. Impacts of meander migration on the Amazon riverine communities using Landsat time series and cloud computing. Science of The Total Environment, v. 806, part. 2, 50449, 2022. DOI: https://doi. org/10.1016/j.scitotenv.2021.150449. Disponível em: https://www.sciencedirect. com/science/article/abs/pii/S0048969721055261?via%3Dihub. Acesso em: 27 ago. 2025.

PIVETTA, M. As duas Amazônias: estação seca se prolonga no sul da floresta, onde se concentra o desmatamento, enquanto o Noroeste se mantém muito úmido. Revista Pesquisa FAPESP, ed. 285, nov. 2019. Disponível em: https:// revistapesquisa.fapesp.br/as-duas-amazonias. Acesso em: 29 set. 2025.

SALOMÃO, F. Controle e preservação dos processos erosivos. In: GUERRA, A.; SILVA, A.; BOTELHO, R. Erosão e conservação dos solos: conceitos, temas e aplicações. Rio de Janeiro: Bertrand Brasil, 1999.

SERVIÇO GEOLÓGICO DO BRASIL. Prevenção de desastres. Produtos por estado - cartografia de risco geológico. [Banco de dados]. (S.d.). Disponível em: https://www.sgb.gov.br/produtos-por-estado-cartografia-de-riscos-geologicos. Acesso em: 23 set. 2025.

SILVA, U.; PEREIRA, M.; MOREIRA, F.; WADT, P.; POLIDORO, J. (ed.). Solos da Amazônia Ocidental: base da sustentabilidade agrícola e ambiental. Brasília, DF: Embrapa, 2021. Disponível em: http://www.infoteca.cnptia.embrapa.br/infoteca/ handle/doc/1131504. Acesso em: 23 set. 2025.

SIOLI, H. Das wasser im Amazonasgebiet. Forsch. Fortschr, v. 26, n. 21/22, p. 274-279, 1950.

SOUZA, E.; AMBRIZZI, T. Pentad precipitation climatology over Brazil and the associated atmospheric mechanisms. Climanálise, São José dos Campos, v. 5, n. 6, p. 36-44, 2003.

TEIXEIRA, S. G.; BANDEIRA, I. C. N. Geodiversidade da costa nordeste do Pará. Belém: Serviço Geológico do Brasil – CPRM, 2020. 152 p. Disponível em: http:// rigeo.cprm.gov.br/jspui/handle/doc/21510. Acesso em: 23 set. 2025.

TEIXEIRA, S. G.; BANDEIRA, I. C. N. Padrões diferenciados de recuo da linha de costa e sua correlação com processos erosivos e as áreas de risco à erosão costeira no estado do Pará. Revista Brasileira de Geologia de Engenharia e Ambiental, v. 11, n. 2, p. 50-63, 2021. Disponível em: https://www.abge.org.br/ downloads/3%20-%20PADROES%20DIFERENCIADOS%20DE%20RECUO%20DA. pdf. Acesso em: Acesso em 07 dez. 2022. Acesso em: 2 out. 2025.

TEIXEIRA, S. G.; BANDEIRA, I. C. N.; DANTAS, M. E. Shoreline variation and identification of local erosion geoindicators on the Brazilian Amazon coast. Journal of Coastal Research, v. 37, p. 6, p. 1088–1098, p. 2021.

TEIXEIRA, S. G.; CONCEIÇÃO, R. A. C.; QUEIROZ, L. J. S. de. Cartografia de risco **geológico**: Abaetetuba, Pará. Belém: Serviço Geológico do Brasil – CPRM, 2023. 46 p. Disponível em: https://rigeo.sgb.gov.br/handle/doc/20761.3. Acesso em: 23 set. 2025.

TEIXEIRA, S. G.; QUEIROZ, L. J. S. de; BANDEIRA, I.C.N.; FONSECA, D. D. F.; MELO JÚNIOR, H. R. de; MENDEL JÚNIOR, A. P.; HARTERY NETO, D. L. Setorização de áreas de risco geológico: Belém, Pará. Belém: Serviço Geológico do Brasil – CPRM, 2021. 42 p. Disponível em: https://rigeo.sgb.gov.br/handle/doc/20761.3. Acesso em: 24 set. 2025.

TEIXEIRA S. G.; MELO JÚNIOR H. R. **Ação emergencial para delimitação de áreas** em alto e muito alto risco a enchentes e movimentos de massa: munícipio de Marapanim – Pará. Belém: Serviço Geológico do Brasil – CPRM, 2019. 18 p. Disponível em: http://rigeo.cprm.gov.br/jspui/handle/doc/18338. Acesso em: 2 out. 2025.

ZUMAK, A.; FASSONI-ANDRADE, A.C.; PEREIRA, H.C.; PAPA, F.; DOS SANTOS SILVA, P.; DO NASCIMENTO, A.C.S.; FLEISCHMANN, A.S. Riverine communities in the Central Amazon are largely subject to erosion and sedimentation risk. **Commun Earth Environ**, v. 6, p. 1–15, 2025. DOI: https://doi.org/10.1038/s43247-025-02058-x. Disponível em: https://www.nature.com/articles/s43247-025-02058-x. Acesso em: 23 set. 2025.

GLOSSÁRIO

Água servida

Águas residuais provenientes de usos domésticos, comerciais ou industriais, que necessitam de tratamento antes de serem lançadas no meio ambiente.

Aterros

Depósitos artificiais formados por solos, entulhos ou resíduos sólidos, utilizados para nivelar superfícies, ganhar espaço em áreas úmidas.

Bacia hidrográfica

Área de terreno delimitada por divisores naturais, como morros e serras, que concentra a drenagem das águas pluviais em um rio principal.

Corrente de maré

Movimento horizontal das águas costeiras associado à oscilação periódica do nível do mar devido às marés, podendo ser de enchente (fluxo em direção à costa) ou de vazante (fluxo para o mar aberto).

Depósitos sedimentares inconsolidados

Acúmulo de partículas como cascalho, areia, silte ou argila que não passaram por compactação ou cimentação, permanecendo facilmente desagregáveis.

Desastre natural

Evento adverso resultante de fenômenos naturais (inundações, deslizamentos, secas, tempestades) que afeta significativamente populações, infraestrutura e meio ambiente.

Equinócio

Fenômeno astronômico em que o Sol cruza o Equador celeste (março e setembro), tornando o dia e a noite de duração aproximadamente igual.

Escarpa fluvial

Declive acentuado formado pela erosão lateral ou vertical de rios, geralmente em margens e vales.

Escoamento superficial

Parte da precipitação que escoa sobre a superfície do solo, quando a capacidade de infiltração é excedida.

Estiagem

Período prolongado de ausência ou baixa incidência de chuvas, reduzindo a disponibilidade hídrica em solos, rios e reservatórios.

Estuário

Ambiente de transição entre rios e o mar, caracterizado pela mistura de águas doces e salgadas, intensa dinâmica sedimentar e alta produtividade biológica.

Falésia

Escarpa costeira íngreme formada pela erosão marinha sobre rochas ou depósitos inconsolidados.

Geotecnia

Ramo da engenharia que estuda as propriedades físicas e mecânicas de solos e rochas para aplicação em obras civis e ambientais.

Interflúvio

Área elevada que separa duas bacias ou cursos d'água adjacentes, funcionando como divisor de águas.

Macromaré

Regime de maré em que a amplitude entre preamar e baixamar excede 4 metros.

Maré de sizígia

Maré de maior amplitude, ocorrida durante lua nova ou cheia, quando Sol e Lua alinham-se em relação à Terra.

Mesomaré

Regime de maré com amplitude entre 2 e 4 metros.

Planície de inundação

Área plana adjacente a rios, sujeita a inundações periódicas. Funciona como espaço de armazenamento temporário da cheia e é importante para a recarga hídrica e deposição de sedimentos finos.

Plataforma continental

Prolongamento submerso do continente, geralmente com profundidade até 200 m, estendendo-se até o talude continental.

Platô

Superfície elevada, extensa e relativamente plana, geralmente limitada por escarpas.

Preamar

Nível máximo atingido pela maré alta.

Processo erosivo

Conjunto de processos naturais ou induzidos pelo homem que removem, transportam e depositam partículas de solo ou rocha.

Radar de penetração (GPR)

Equipamento de sensoriamento remoto utilizado para investigar estruturas do subsolo por meio de ondas eletromagnéticas.

Risco alto

Probabilidade significativa de ocorrência de evento adverso com perdas relevantes.

Risco baixo

Situação com baixa probabilidade de ocorrência ou com danos pouco expressivos.

Risco médio

Situação intermediária entre risco baixo e alto, requerendo monitoramento.

Risco muito alto

Alta probabilidade de ocorrência e danos graves, exigindo medidas emergenciais.

Risco existente

Risco já identificado em áreas ocupadas.

Risco potencial

Risco que pode vir a ocorrer em função das características ambientais ou ocupacionais.

Saturação do solo

Condição em que todos os poros do solo estão preenchidos por água, favorecendo o escoamento superficial.

Sensoriamento remoto

Técnica de obtenção de informações da superfície terrestre por sensores em satélites, aeronaves ou drones, sem contato direto.

Solapamento

Erosão ou remoção de material na base de taludes, margens ou encostas, levando à instabilidade.

Suscetibilidade

Propensão natural de um terreno a ser afetado por determinado processo geológico ou hidrológico.

Talude

Superfície inclinada formada por processos naturais ou intervenções humanas que ligam dois níveis diferentes de terreno.

Várzea

Áreas planas e baixas junto a rios, periodicamente inundáveis, com solos férteis.

Vulnerabilidade social

Condição que expressa a fragilidade de grupos sociais diante de riscos e desastres, em função de aspectos socioeconômicos, culturais e institucionais.

Zona costeira

Faixa de interface entre ambientes terrestre e marinho. incluindo praias, estuários, manguezais e áreas adjacentes.

MINISTÉRIO DE MINAS E ENERGIA

